metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m992-m993

Propane-1,2-diaminium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)cuprate(II) tetra­hydrate

aFaculty of Chemistry, Tarbiat Moallem University, 15614, Tehran, Iran, bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, Iran, and cDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 917751436, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 28 February 2011; accepted 21 June 2011; online 30 June 2011)

In the title compound, (C3H12N2)[Cu(C7H3NO4)2]·4H2O, the CuII atom is six-coordinated in a distorted octa­hedral geometry by two tridentate pyridine-2,6-dicarboxyl­ate (pydc) ligands. In the crystal, inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds, as well as ππ stacking inter­actions between the pyridine rings of the pydc ligands [centroid–centroid distance = 3.4714 (14) Å] are present. C=O⋯π inter­actions between the carbonyl groups and pyridine rings [O⋯centroid distances = 3.150 (2) and 3.2233 (19) Å] are also observed.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008d[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008d). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aghabozorg et al. (2008a[Aghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008a). J. Chem. Crystallogr. 38, 135-145.],b[Aghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008b). Acta Cryst. E64, m874-m875.],c[Aghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, o1045-o1046.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[Cu(C7H3NO4)2]·4H2O

  • Mr = 541.97

  • Orthorhombic, P n a 21

  • a = 20.919 (4) Å

  • b = 8.2015 (16) Å

  • c = 12.739 (3) Å

  • V = 2185.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 120 K

  • 0.50 × 0.40 × 0.35 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.602, Tmax = 0.684

  • 9693 measured reflections

  • 5040 independent reflections

  • 4803 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.09

  • 5040 reflections

  • 350 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1969 Friedel pairs

  • Flack parameter: −0.001 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O11i 0.93 2.59 3.476 (3) 160
C11—H11⋯O7ii 0.93 2.56 3.301 (3) 137
C15—H15A⋯O8iii 0.97 2.30 3.245 (3) 165
C16—H16⋯O5iv 0.98 2.53 3.321 (3) 138
N3—H3A⋯O6iv 0.89 (4) 1.93 (4) 2.812 (3) 170 (3)
N3—H3B⋯O11 0.95 (4) 1.88 (4) 2.773 (3) 155 (3)
N3—H3C⋯O2 0.90 (4) 1.91 (4) 2.794 (2) 167 (4)
N4—H4A⋯O10iv 0.86 (3) 1.94 (3) 2.786 (3) 165 (3)
N4—H4B⋯O12 0.83 (4) 2.00 (4) 2.811 (3) 165 (3)
N4—H4C⋯O4v 0.84 (2) 2.01 (2) 2.829 (3) 167 (3)
O9—H9A⋯O1 0.84 (2) 1.93 (2) 2.739 (3) 163 (3)
O9—H9B⋯O4vi 0.82 (2) 2.04 (2) 2.826 (3) 160 (3)
O10—H10A⋯O9 0.78 (4) 1.97 (4) 2.731 (3) 164 (4)
O10—H10B⋯O8v 0.85 (4) 1.88 (4) 2.724 (3) 170 (3)
O11—H11A⋯O3v 0.82 (2) 2.41 (3) 3.080 (2) 140 (3)
O11—H11A⋯O7v 0.82 (2) 2.30 (3) 2.957 (2) 138 (3)
O11—H11B⋯O10 0.82 (4) 1.98 (4) 2.781 (3) 169 (3)
O12—H12A⋯O2vii 0.79 (2) 1.99 (2) 2.770 (3) 170 (3)
O12—H12B⋯O6iv 0.81 (2) 2.09 (3) 2.786 (2) 144 (3)
Symmetry codes: (i) [-x+1, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our group has previously reported some proton-transfer systems (Aghabozorg et al., 2008d), using pyridine-2,6-dicarboxylic acid (pydcH2), propane-1,2-diamine (p-1,2-da) and propane-1,3-diamine (p-1,3-da), which formed the proton-transfer compounds (p-1,2-daH2)(pydcH)2.2H2O (Aghabozorg et al., 2008c), (p-1,2-daH2)[Ni(pydc)2].4H2O (Aghabozorg et al., 2008b), (p-1,3-daH2)[Cd(pydc)2].3.5H2O, (p-1,3-daH2)[Cu(pydc)2].4H2O and (p-1,3-daH2)[Co(pydc)2].4H2O (Aghabozorg et al., 2008a).

We describe here the crystal structure of the title compound (Fig. 1). In the complex anion, the CuII ion is six-coordinated by two (pydc)2- ligands in a distorted octahedral geometry. In the crystal, there are N—H···O, O—H···O and weak C—H···O intermolecular hydrogen bonds (Table 1, Fig. 2). There are also ππ stacking interactions between the pyridine rings of the pydc ligands [centroid–centroid distance = 3.4714 (14) Å], as shown in Fig. 3. In addition, there are CO···π interactions (Fig. 4) between the carbonyl groups and pyridine rings [O···centroid distances = 3.150 (2) and 3.2233 (19) Å].

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008d). For related structures, see: Aghabozorg et al. (2008a,b,c).

Experimental top

By mixing Cu(OAc)2.H2O (1 mmol), pyridine-2,6-dicarboxylic acid (2 mmol) and propane-1,2-diamine (1 mmol) in 20 ml water, a blue solution was obtained. Blue crystals of the title compound were obtained by allowing the mixture to stand at room temperature for a week.

Refinement top

H atoms of the protonated N atoms and water molecules were found in a difference Fourier map and their coordinates were refined and Uiso values were fixed, in which H4C, H9A, H9B, H11A, H12A and H12B were refined with distance restraints of N—H/O—H = 0.84 (2), 0.84 (2), 0.82 (2), 0.82 (2), 0.79 (2), 0.81 (2) Å. H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH3), 0.97 (CH2) and 0.98 (CH)Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound, showing intermolecular N—H···O, O—H···O and weak C—H···O hydrogen bonds (blue dashed lines).
[Figure 3] Fig. 3. The packing diagram of the title compound, showing intermolecular ππ interactions [dashed lines, centroid–centroid distance = 3.4714 (14) Å]. Water molecules and cations have been omitted for clarity.
[Figure 4] Fig. 4. The packing diagram of the title compound, showing CO···π interactions (dashed lines) between the pyridine rings and the carbonyl groups [O···centroid distances = 3.150 (2) and 3.2233 (19) Å]. Water molecules and cations have been omitted for clarity.
Propane-1,2-diaminium bis(pyridine-2,6-dicarboxylato- κ3O2,N,O6)cuprate(II) tetrahydrate top
Crystal data top
(C3H12N2)[Cu(C7H3NO4)2]·4H2OF(000) = 1124
Mr = 541.97Dx = 1.647 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5040 reflections
a = 20.919 (4) Åθ = 2.5–29.1°
b = 8.2015 (16) ŵ = 1.07 mm1
c = 12.739 (3) ÅT = 120 K
V = 2185.6 (7) Å3Block, blue
Z = 40.50 × 0.40 × 0.35 mm
Data collection top
Stoe IPDS-2
diffractometer
5040 independent reflections
Radiation source: fine-focus sealed tube4803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 29.1°, θmin = 2.5°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 2428
Tmin = 0.602, Tmax = 0.684k = 911
9693 measured reflectionsl = 1417
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.9494P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.003
5040 reflectionsΔρmax = 0.43 e Å3
350 parametersΔρmin = 0.52 e Å3
7 restraintsAbsolute structure: Flack (1983), 1969 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (10)
Crystal data top
(C3H12N2)[Cu(C7H3NO4)2]·4H2OV = 2185.6 (7) Å3
Mr = 541.97Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.919 (4) ŵ = 1.07 mm1
b = 8.2015 (16) ÅT = 120 K
c = 12.739 (3) Å0.50 × 0.40 × 0.35 mm
Data collection top
Stoe IPDS-2
diffractometer
5040 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
4803 reflections with I > 2σ(I)
Tmin = 0.602, Tmax = 0.684Rint = 0.029
9693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.43 e Å3
S = 1.09Δρmin = 0.52 e Å3
5040 reflectionsAbsolute structure: Flack (1983), 1969 Friedel pairs
350 parametersAbsolute structure parameter: 0.001 (10)
7 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.730311 (10)0.99084 (3)0.53964 (3)0.00819 (6)
O10.65641 (8)0.7928 (2)0.57097 (13)0.0156 (3)
O20.60721 (7)0.67722 (19)0.70796 (13)0.0133 (3)
O30.81368 (7)1.15817 (19)0.58997 (13)0.0121 (3)
O40.86763 (7)1.22026 (19)0.73603 (13)0.0126 (3)
O50.65879 (7)1.16886 (17)0.53346 (15)0.0134 (3)
O60.59524 (8)1.2936 (2)0.41726 (14)0.0151 (3)
O70.80165 (7)0.83190 (19)0.48615 (13)0.0109 (3)
O80.85015 (8)0.7555 (2)0.33667 (13)0.0129 (3)
O90.56195 (10)0.7606 (4)0.42357 (17)0.0426 (7)
O100.44108 (9)0.8652 (2)0.46858 (15)0.0162 (3)
O110.42267 (8)0.5941 (2)0.59618 (14)0.0171 (3)
O120.46500 (9)0.3499 (2)0.38944 (16)0.0216 (4)
N10.73387 (8)0.9634 (2)0.69332 (17)0.0079 (3)
N20.72136 (9)1.0156 (2)0.38998 (18)0.0077 (4)
N30.54048 (9)0.4390 (2)0.59580 (16)0.0124 (3)
N40.44690 (9)0.1638 (2)0.57235 (16)0.0116 (4)
C10.64760 (10)0.7709 (3)0.66754 (17)0.0096 (4)
C20.69142 (10)0.8648 (2)0.74089 (18)0.0088 (4)
C30.69152 (10)0.8437 (2)0.84916 (18)0.0094 (4)
H30.66160.77630.88130.011*
C40.73706 (10)0.9252 (3)0.90831 (18)0.0112 (4)
H40.73820.91220.98080.013*
C50.78101 (11)1.0265 (3)0.85857 (19)0.0099 (4)
H50.81211.08130.89710.012*
C60.77765 (10)1.0443 (2)0.75039 (18)0.0079 (4)
C70.82336 (9)1.1500 (2)0.68727 (18)0.0089 (4)
C80.63972 (10)1.1994 (3)0.44162 (19)0.0109 (4)
C90.67591 (10)1.1157 (2)0.35435 (18)0.0093 (4)
C100.66963 (11)1.1435 (2)0.24765 (18)0.0110 (4)
H100.63791.21230.22210.013*
C110.71196 (11)1.0660 (3)0.17933 (17)0.0118 (4)
H110.70891.08390.10740.014*
C120.75891 (11)0.9616 (3)0.21866 (18)0.0097 (4)
H120.78750.90930.17390.012*
C130.76179 (10)0.9379 (3)0.32665 (17)0.0090 (4)
C140.80893 (10)0.8320 (2)0.38701 (19)0.0097 (4)
C150.53174 (11)0.3070 (3)0.67483 (19)0.0135 (4)
H15B0.50010.34110.72590.016*
H15A0.57170.28990.71170.016*
C160.51050 (10)0.1466 (2)0.62550 (18)0.0114 (4)
H160.54230.11410.57300.014*
C170.50603 (13)0.0132 (3)0.7083 (2)0.0188 (5)
H17B0.47540.04400.76070.023*
H17C0.54710.00170.74060.023*
H17A0.49280.08690.67580.023*
H3A0.5597 (15)0.404 (4)0.538 (3)0.023*
H4A0.4377 (15)0.074 (4)0.540 (3)0.023*
H9A0.5887 (14)0.790 (4)0.468 (2)0.023*
H10A0.4750 (18)0.846 (4)0.446 (3)0.023*
H11A0.3889 (11)0.562 (4)0.572 (3)0.023*
H12A0.4484 (15)0.340 (4)0.3341 (18)0.023*
H3B0.4992 (17)0.477 (4)0.577 (3)0.023*
H4B0.4502 (15)0.233 (4)0.525 (3)0.023*
H9B0.5786 (16)0.726 (4)0.3696 (19)0.023*
H10B0.4158 (17)0.830 (4)0.421 (3)0.023*
H11B0.4249 (16)0.680 (4)0.564 (3)0.023*
H12B0.4996 (11)0.316 (4)0.372 (3)0.023*
H3C0.5641 (17)0.520 (4)0.622 (3)0.023*
H4C0.4190 (13)0.200 (4)0.613 (2)0.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00687 (10)0.01264 (10)0.00506 (10)0.00041 (8)0.00005 (12)0.00104 (10)
O10.0129 (7)0.0252 (8)0.0088 (8)0.0069 (6)0.0014 (6)0.0002 (6)
O20.0105 (7)0.0159 (7)0.0134 (8)0.0052 (5)0.0017 (6)0.0014 (6)
O30.0133 (7)0.0152 (7)0.0079 (8)0.0031 (5)0.0008 (6)0.0008 (6)
O40.0088 (7)0.0169 (7)0.0122 (8)0.0040 (6)0.0002 (6)0.0021 (6)
O50.0113 (6)0.0217 (7)0.0072 (7)0.0036 (5)0.0009 (7)0.0002 (7)
O60.0115 (7)0.0202 (8)0.0135 (8)0.0066 (6)0.0001 (6)0.0019 (6)
O70.0096 (7)0.0150 (7)0.0081 (8)0.0023 (5)0.0003 (6)0.0009 (5)
O80.0090 (7)0.0178 (7)0.0120 (8)0.0024 (6)0.0027 (6)0.0000 (6)
O90.0142 (9)0.100 (2)0.0136 (10)0.0126 (11)0.0035 (8)0.0176 (12)
O100.0133 (8)0.0181 (7)0.0172 (9)0.0011 (6)0.0005 (7)0.0052 (6)
O110.0118 (7)0.0214 (8)0.0180 (9)0.0024 (6)0.0011 (7)0.0026 (7)
O120.0146 (8)0.0367 (10)0.0135 (9)0.0005 (7)0.0046 (7)0.0009 (7)
N10.0060 (8)0.0104 (8)0.0073 (9)0.0005 (6)0.0002 (7)0.0003 (8)
N20.0049 (7)0.0120 (8)0.0063 (9)0.0024 (6)0.0006 (7)0.0007 (7)
N30.0096 (8)0.0148 (8)0.0128 (9)0.0006 (6)0.0004 (7)0.0032 (7)
N40.0073 (7)0.0147 (8)0.0128 (9)0.0011 (6)0.0003 (7)0.0017 (7)
C10.0069 (8)0.0116 (9)0.0104 (10)0.0006 (7)0.0001 (8)0.0003 (7)
C20.0062 (8)0.0097 (8)0.0104 (10)0.0007 (7)0.0001 (8)0.0002 (7)
C30.0093 (9)0.0114 (9)0.0074 (9)0.0006 (7)0.0025 (8)0.0023 (7)
C40.0146 (10)0.0142 (9)0.0050 (9)0.0024 (8)0.0014 (8)0.0005 (7)
C50.0112 (9)0.0101 (8)0.0085 (11)0.0025 (7)0.0005 (8)0.0015 (7)
C60.0073 (8)0.0098 (8)0.0066 (10)0.0007 (7)0.0006 (7)0.0004 (7)
C70.0064 (8)0.0090 (8)0.0113 (10)0.0007 (6)0.0007 (8)0.0001 (7)
C80.0088 (9)0.0132 (8)0.0107 (10)0.0000 (7)0.0022 (8)0.0002 (7)
C90.0076 (9)0.0117 (9)0.0085 (9)0.0009 (7)0.0007 (8)0.0006 (7)
C100.0125 (9)0.0099 (8)0.0105 (10)0.0009 (7)0.0002 (8)0.0009 (7)
C110.0156 (10)0.0131 (9)0.0066 (10)0.0028 (8)0.0009 (8)0.0004 (7)
C120.0116 (9)0.0109 (8)0.0065 (10)0.0032 (8)0.0019 (8)0.0014 (7)
C130.0077 (9)0.0097 (9)0.0095 (11)0.0012 (7)0.0009 (8)0.0021 (7)
C140.0107 (9)0.0079 (8)0.0105 (10)0.0032 (7)0.0005 (8)0.0004 (7)
C150.0117 (9)0.0175 (9)0.0112 (10)0.0023 (8)0.0013 (8)0.0018 (8)
C160.0091 (9)0.0144 (9)0.0108 (10)0.0000 (7)0.0008 (8)0.0015 (7)
C170.0220 (11)0.0188 (10)0.0156 (13)0.0035 (8)0.0001 (10)0.0023 (9)
Geometric parameters (Å, º) top
Cu1—N21.926 (2)N4—C161.499 (3)
Cu1—N11.972 (2)N4—H4A0.86 (3)
Cu1—O52.0920 (14)N4—H4B0.83 (4)
Cu1—O72.0953 (16)N4—H4C0.84 (2)
Cu1—O12.2775 (17)C1—C21.519 (3)
Cu1—O32.3100 (16)C2—C31.390 (3)
O1—C11.257 (3)C3—C41.386 (3)
O2—C11.253 (3)C3—H30.9300
O3—C71.258 (3)C4—C51.392 (3)
O4—C71.255 (3)C4—H40.9300
O5—C81.261 (3)C5—C61.387 (3)
O6—C81.248 (3)C5—H50.9300
O7—C141.272 (3)C6—C71.521 (3)
O8—C141.245 (3)C8—C91.510 (3)
O9—H9A0.84 (2)C9—C101.384 (3)
O9—H9B0.82 (2)C10—C111.395 (3)
O10—H10A0.78 (4)C10—H100.9300
O10—H10B0.85 (4)C11—C121.396 (3)
O11—H11A0.82 (2)C11—H110.9300
O11—H11B0.82 (4)C12—C131.390 (3)
O12—H12A0.79 (2)C12—H120.9300
O12—H12B0.81 (2)C13—C141.523 (3)
N1—C61.344 (3)C15—C161.524 (3)
N1—C21.345 (3)C15—H15B0.9700
N2—C131.331 (3)C15—H15A0.9700
N2—C91.336 (3)C16—C171.523 (3)
N3—C151.490 (3)C16—H160.9800
N3—H3A0.89 (4)C17—H17B0.9600
N3—H3B0.95 (4)C17—H17C0.9600
N3—H3C0.90 (4)C17—H17A0.9600
N2—Cu1—N1176.55 (8)C3—C4—H4120.2
N2—Cu1—O579.62 (8)C5—C4—H4120.2
N1—Cu1—O598.27 (8)C6—C5—C4118.8 (2)
N2—Cu1—O779.21 (8)C6—C5—H5120.6
N1—Cu1—O7103.00 (7)C4—C5—H5120.6
O5—Cu1—O7158.64 (7)N1—C6—C5121.3 (2)
N2—Cu1—O1100.52 (7)N1—C6—C7115.1 (2)
N1—Cu1—O176.72 (7)C5—C6—C7123.6 (2)
O5—Cu1—O191.08 (6)O4—C7—O3125.6 (2)
O7—Cu1—O195.55 (6)O4—C7—C6117.6 (2)
N2—Cu1—O3106.59 (7)O3—C7—C6116.74 (18)
N1—Cu1—O376.33 (7)O6—C8—O5126.1 (2)
O5—Cu1—O397.80 (6)O6—C8—C9118.2 (2)
O7—Cu1—O385.54 (6)O5—C8—C9115.73 (19)
O1—Cu1—O3152.56 (7)N2—C9—C10120.2 (2)
C1—O1—Cu1111.91 (14)N2—C9—C8112.7 (2)
C7—O3—Cu1111.32 (13)C10—C9—C8126.90 (19)
C8—O5—Cu1113.56 (15)C9—C10—C11118.5 (2)
C14—O7—Cu1114.06 (14)C9—C10—H10120.7
H9A—O9—H9B113 (3)C11—C10—H10120.7
H10A—O10—H10B104 (3)C10—C11—C12120.1 (2)
H11A—O11—H11B98 (3)C10—C11—H11119.9
H12A—O12—H12B97 (4)C12—C11—H11119.9
C6—N1—C2120.2 (2)C13—C12—C11118.1 (2)
C6—N1—Cu1120.43 (15)C13—C12—H12120.9
C2—N1—Cu1119.39 (16)C11—C12—H12120.9
C13—N2—C9122.7 (2)N2—C13—C12120.4 (2)
C13—N2—Cu1119.20 (17)N2—C13—C14112.2 (2)
C9—N2—Cu1118.04 (17)C12—C13—C14127.39 (19)
C15—N3—H3A113 (2)O8—C14—O7126.5 (2)
C15—N3—H3B107 (2)O8—C14—C13118.4 (2)
H3A—N3—H3B108 (3)O7—C14—C13115.11 (19)
C15—N3—H3C111 (2)N3—C15—C16112.60 (19)
H3A—N3—H3C108 (3)N3—C15—H15B109.1
H3B—N3—H3C111 (3)C16—C15—H15B109.1
C16—N4—H4A109 (2)N3—C15—H15A109.1
C16—N4—H4B109 (2)C16—C15—H15A109.1
H4A—N4—H4B105 (3)H15B—C15—H15A107.8
C16—N4—H4C112 (2)N4—C16—C17109.01 (18)
H4A—N4—H4C116 (3)N4—C16—C15111.34 (17)
H4B—N4—H4C106 (3)C17—C16—C15110.6 (2)
O2—C1—O1126.1 (2)N4—C16—H16108.6
O2—C1—C2117.73 (19)C17—C16—H16108.6
O1—C1—C2116.18 (19)C15—C16—H16108.6
N1—C2—C3121.4 (2)C16—C17—H17B109.5
N1—C2—C1115.23 (19)C16—C17—H17C109.5
C3—C2—C1123.26 (19)H17B—C17—H17C109.5
C4—C3—C2118.7 (2)C16—C17—H17A109.5
C4—C3—H3120.6H17B—C17—H17A109.5
C2—C3—H3120.6H17C—C17—H17A109.5
C3—C4—C5119.6 (2)
N2—Cu1—O1—C1171.17 (16)O1—C1—C2—C3174.4 (2)
N1—Cu1—O1—C16.72 (15)N1—C2—C3—C40.8 (3)
O5—Cu1—O1—C191.53 (16)C1—C2—C3—C4174.61 (18)
O7—Cu1—O1—C1108.80 (15)C2—C3—C4—C50.5 (3)
O3—Cu1—O1—C117.8 (2)C3—C4—C5—C60.5 (3)
N2—Cu1—O3—C7179.84 (14)C2—N1—C6—C51.1 (3)
N1—Cu1—O3—C72.05 (14)Cu1—N1—C6—C5179.91 (16)
O5—Cu1—O3—C798.72 (14)C2—N1—C6—C7179.27 (18)
O7—Cu1—O3—C7102.50 (14)Cu1—N1—C6—C71.7 (3)
O1—Cu1—O3—C79.0 (2)C4—C5—C6—N11.3 (3)
N2—Cu1—O5—C85.37 (15)C4—C5—C6—C7179.37 (18)
N1—Cu1—O5—C8171.87 (15)Cu1—O3—C7—O4175.85 (16)
O7—Cu1—O5—C813.2 (3)Cu1—O3—C7—C63.5 (2)
O1—Cu1—O5—C895.13 (15)N1—C6—C7—O4175.73 (19)
O3—Cu1—O5—C8110.91 (15)C5—C6—C7—O42.4 (3)
N2—Cu1—O7—C144.09 (14)N1—C6—C7—O33.6 (3)
N1—Cu1—O7—C14178.60 (14)C5—C6—C7—O3178.2 (2)
O5—Cu1—O7—C143.7 (3)Cu1—O5—C8—O6175.81 (18)
O1—Cu1—O7—C14103.77 (14)Cu1—O5—C8—C95.7 (2)
O3—Cu1—O7—C14103.75 (15)C13—N2—C9—C100.5 (3)
O5—Cu1—N1—C696.10 (17)Cu1—N2—C9—C10176.89 (15)
O7—Cu1—N1—C682.02 (18)C13—N2—C9—C8175.35 (18)
O1—Cu1—N1—C6174.75 (19)Cu1—N2—C9—C82.1 (2)
O3—Cu1—N1—C60.02 (16)O6—C8—C9—N2178.67 (19)
O5—Cu1—N1—C282.93 (17)O5—C8—C9—N22.7 (3)
O7—Cu1—N1—C298.95 (17)O6—C8—C9—C106.9 (3)
O1—Cu1—N1—C26.22 (16)O5—C8—C9—C10171.7 (2)
O3—Cu1—N1—C2179.00 (18)N2—C9—C10—C110.5 (3)
O5—Cu1—N2—C13173.65 (16)C8—C9—C10—C11173.5 (2)
O7—Cu1—N2—C133.47 (15)C9—C10—C11—C120.7 (3)
O1—Cu1—N2—C1397.18 (16)C10—C11—C12—C130.1 (3)
O3—Cu1—N2—C1378.52 (16)C9—N2—C13—C121.4 (3)
O5—Cu1—N2—C93.87 (15)Cu1—N2—C13—C12176.00 (16)
O7—Cu1—N2—C9179.02 (16)C9—N2—C13—C14179.81 (18)
O1—Cu1—N2—C985.30 (16)Cu1—N2—C13—C142.4 (2)
O3—Cu1—N2—C999.00 (16)C11—C12—C13—N21.2 (3)
Cu1—O1—C1—O2175.48 (17)C11—C12—C13—C14179.30 (19)
Cu1—O1—C1—C26.0 (2)Cu1—O7—C14—O8175.91 (17)
C6—N1—C2—C30.0 (3)Cu1—O7—C14—C134.0 (2)
Cu1—N1—C2—C3179.01 (15)N2—C13—C14—O8178.59 (18)
C6—N1—C2—C1175.74 (18)C12—C13—C14—O80.3 (3)
Cu1—N1—C2—C15.2 (2)N2—C13—C14—O71.3 (3)
O2—C1—C2—N1179.95 (19)C12—C13—C14—O7179.6 (2)
O1—C1—C2—N11.3 (3)N3—C15—C16—N461.9 (2)
O2—C1—C2—C34.3 (3)N3—C15—C16—C17176.67 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O11i0.932.593.476 (3)160
C11—H11···O7ii0.932.563.301 (3)137
C15—H15A···O8iii0.972.303.245 (3)165
C16—H16···O5iv0.982.533.321 (3)138
N3—H3A···O6iv0.89 (4)1.93 (4)2.812 (3)170 (3)
N3—H3B···O110.95 (4)1.88 (4)2.773 (3)155 (3)
N3—H3C···O20.90 (4)1.91 (4)2.794 (2)167 (4)
N4—H4A···O10iv0.86 (3)1.94 (3)2.786 (3)165 (3)
N4—H4B···O120.83 (4)2.00 (4)2.811 (3)165 (3)
N4—H4C···O4v0.84 (2)2.01 (2)2.829 (3)167 (3)
O9—H9A···O10.84 (2)1.93 (2)2.739 (3)163 (3)
O9—H9B···O4vi0.82 (2)2.04 (2)2.826 (3)160 (3)
O10—H10A···O90.78 (4)1.97 (4)2.731 (3)164 (4)
O10—H10B···O8v0.85 (4)1.88 (4)2.724 (3)170 (3)
O11—H11A···O3v0.82 (2)2.41 (3)3.080 (2)140 (3)
O11—H11A···O7v0.82 (2)2.30 (3)2.957 (2)138 (3)
O11—H11B···O100.82 (4)1.98 (4)2.781 (3)169 (3)
O12—H12A···O2vii0.79 (2)1.99 (2)2.770 (3)170 (3)
O12—H12B···O6iv0.81 (2)2.09 (3)2.786 (2)144 (3)
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z; (v) x1/2, y+3/2, z; (vi) x+3/2, y1/2, z1/2; (vii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Cu(C7H3NO4)2]·4H2O
Mr541.97
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)20.919 (4), 8.2015 (16), 12.739 (3)
V3)2185.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.50 × 0.40 × 0.35
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.602, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
9693, 5040, 4803
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.09
No. of reflections5040
No. of parameters350
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.52
Absolute structureFlack (1983), 1969 Friedel pairs
Absolute structure parameter0.001 (10)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O11i0.932.593.476 (3)160
C11—H11···O7ii0.932.563.301 (3)137
C15—H15A···O8iii0.972.303.245 (3)165
C16—H16···O5iv0.982.533.321 (3)138
N3—H3A···O6iv0.89 (4)1.93 (4)2.812 (3)170 (3)
N3—H3B···O110.95 (4)1.88 (4)2.773 (3)155 (3)
N3—H3C···O20.90 (4)1.91 (4)2.794 (2)167 (4)
N4—H4A···O10iv0.86 (3)1.94 (3)2.786 (3)165 (3)
N4—H4B···O120.83 (4)2.00 (4)2.811 (3)165 (3)
N4—H4C···O4v0.84 (2)2.01 (2)2.829 (3)167 (3)
O9—H9A···O10.84 (2)1.93 (2)2.739 (3)163 (3)
O9—H9B···O4vi0.82 (2)2.04 (2)2.826 (3)160 (3)
O10—H10A···O90.78 (4)1.97 (4)2.731 (3)164 (4)
O10—H10B···O8v0.85 (4)1.88 (4)2.724 (3)170 (3)
O11—H11A···O3v0.82 (2)2.41 (3)3.080 (2)140 (3)
O11—H11A···O7v0.82 (2)2.30 (3)2.957 (2)138 (3)
O11—H11B···O100.82 (4)1.98 (4)2.781 (3)169 (3)
O12—H12A···O2vii0.79 (2)1.989 (19)2.770 (3)170 (3)
O12—H12B···O6iv0.81 (2)2.09 (3)2.786 (2)144 (3)
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z; (v) x1/2, y+3/2, z; (vi) x+3/2, y1/2, z1/2; (vii) x+1, y+1, z1/2.
 

Acknowledgements

We are grateful to Tarbiat Moallem University for financial support.

References

First citationAghabozorg, H., Ghadermazi, M., Nakhjavan, B. & Manteghi, F. (2008a). J. Chem. Crystallogr. 38, 135–145.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Heidari, M., Bagheri, S., Attar Gharamaleki, J. & Ghadermazi, M. (2008b). Acta Cryst. E64, m874–m875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Heidari, M., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, o1045–o1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008d). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m992-m993
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds