metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(4-cyano­benz­yl)pyrazinium] bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato)nickelate(II)

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: dtempler@163.com

(Received 5 June 2011; accepted 10 June 2011; online 18 June 2011)

The asymmetric unit of the title complex, (C12H10N3)2[Ni(C4N2S2)2], consists of one 1-(4-cyano­benz­yl)pyrazinium cation and one half of an [Ni(mnt)2]2− dianion (mnt2− is 1,2-dicyano­ethene-1,2-dithiol­ate). The Ni2+ ion is located on an inversion center and is coordinated by four S atoms from two mnt2− ligands, exhibiting a square-planar coordination geometry. The cation adopts a conformation where both the pyrazine ring and the benzene ring are twisted with respect to the C—C—N reference plane by 16.5 (2) and 69.8 (1)°, respectively.

Related literature

For general background to square-planar bis-1,2-dithiol­ato complexes of transition metals showing potential application as magnetic or conducting materials and other properties, see: Bigoli et al. (2002[Bigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pilia, L., Pintus, G., Serpe, A. & Trogu, E. F. (2002). Inorg. Chem. 41, 5241-5248.]); Duan et al. (2010[Duan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509-1522.]); Pei et al. (2011[Pei, W.-B., Wu, J.-S., Tian, Z.-F., Ren, X.-M. & Song, Y. (2011). Inorg. Chem. 50, 3970-3980.]). For the synthesis, see: Davison & Holm (1967[Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8-26.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H10N3)2[Ni(C4N2S2)2]

  • Mr = 731.53

  • Monoclinic, P 21 /n

  • a = 7.115 (3) Å

  • b = 13.623 (6) Å

  • c = 17.186 (8) Å

  • β = 101.671 (5)°

  • V = 1631.4 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002)[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.] Tmin = 0.807, Tmax = 0.875

  • 8060 measured reflections

  • 2871 independent reflections

  • 2586 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.074

  • S = 1.06

  • 2871 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis-1,2-dithiolene complexes of transition metals have been widely studied because of their novel properties and applications in the areas of conducting and magnetic materials, dyes, nonlinear optics, catalysis and others. These applications arise due to a combination of functional properties, specific geometries and intermolecular interactions. (Bigoli et al., 2002; Duan et al., 2010; Pei et al., 2011). Herein we report the crystal structure of the title compound (Fig. 1).

An asymmetric unit consists of one half [Ni(mnt)2]2- dianion and one 1-N-(4'-cyano-benzyl)-pyrazinium cation. In the [Ni(mnt)2]2- moiety, the Ni atom is situated at a inversion center and is coordinated by four S atoms from two mnt2- ligands, forming a square-planar coordination geometry. The cation adopts a conformation where the bond lengths and bond angles were normal, and both the pyrazine ring and the phenyl ring are twisted with respect to the C8—C12—N4 reference plane with the corresponding dihedral angles of 16.5 (2)° and 69.8 (1)°.

Related literature top

For general background to square-planar bis-1,2-dithiolene complexes of transition metals showing potential application as magnetic or conducting materials and other properties, see: Bigoli et al. (2002); Duan et al. (2010); Pei et al. (2011). For the synthesis, see: Davison & Holm (1967).

Experimental top

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) and heated to boiling for about 20 min. After the red solution was filtered an aqueous solution of 1-N-(4'-cyano-benzyl)-pyrazinium chloride (579 mg, 2.5 mmol) was added dropwise to the filtrate. The immediately formed dark red precipitate was filtered off, washed with water and dried in vacuum (yield: 722 mg, 79%). Block shaped single crystals suitable for X-ray analysis were obtained via recrystallization of the corresponding complex in acetone.

Refinement top

All non-hydrogen atoms were refined anisotropically, whereas the H atoms were calculated and placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93 or 0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (i = -x, -y, -z).
[Figure 2] Fig. 2. Packing diagram for (I) viewed along a axis.
Bis[1-(4-cyanobenzyl)pyrazinium] bis(1,2-dicyanoethene-1,2-dithiolato)nickelate(II) top
Crystal data top
(C12H10N3)2[Ni(C4N2S2)2]F(000) = 748
Mr = 731.53Dx = 1.489 Mg m3
Monoclinic, P21/nMelting point: 456 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.115 (3) ÅCell parameters from 8060 reflections
b = 13.623 (6) Åθ = 2.4–25.0°
c = 17.186 (8) ŵ = 0.89 mm1
β = 101.671 (5)°T = 298 K
V = 1631.4 (13) Å3Block, red
Z = 20.30 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2871 independent reflections
Radiation source: fine-focus sealed tube2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 84
Tmin = 0.807, Tmax = 0.875k = 1615
8060 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3009P]
where P = (Fo2 + 2Fc2)/3
2871 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
(C12H10N3)2[Ni(C4N2S2)2]V = 1631.4 (13) Å3
Mr = 731.53Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.115 (3) ŵ = 0.89 mm1
b = 13.623 (6) ÅT = 298 K
c = 17.186 (8) Å0.30 × 0.20 × 0.15 mm
β = 101.671 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2871 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2586 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.875Rint = 0.020
8060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2871 reflectionsΔρmin = 0.26 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.04070 (11)
C10.0668 (2)0.13286 (12)0.14603 (9)0.0452 (4)
C20.2425 (2)0.09233 (12)0.14864 (10)0.0464 (4)
C30.4020 (3)0.11475 (13)0.21086 (11)0.0566 (4)
C40.0334 (2)0.19910 (13)0.20637 (10)0.0508 (4)
C50.3059 (2)0.61780 (13)0.03334 (11)0.0515 (4)
C60.4014 (3)0.67295 (15)0.08013 (11)0.0608 (5)
H6A0.34400.68650.13260.073*
C70.5826 (3)0.70790 (15)0.04870 (11)0.0594 (5)
H7A0.64730.74480.08050.071*
C80.6697 (2)0.68900 (12)0.02927 (10)0.0473 (4)
C90.5730 (2)0.63300 (13)0.07578 (10)0.0513 (4)
H9A0.63110.61900.12810.062*
C100.3910 (3)0.59771 (13)0.04520 (11)0.0550 (4)
H10A0.32600.56080.07690.066*
C110.1164 (3)0.58128 (16)0.06742 (13)0.0670 (5)
C120.8708 (2)0.72452 (14)0.06029 (11)0.0541 (4)
H12A0.94860.66930.08330.065*
H12B0.92320.74840.01590.065*
C130.7384 (3)0.85735 (13)0.13272 (12)0.0558 (4)
H13A0.61710.84760.10140.067*
C140.7677 (3)0.92685 (15)0.19170 (13)0.0672 (5)
H14A0.66320.96430.19890.081*
C151.0821 (3)0.89226 (14)0.22341 (12)0.0658 (5)
H15A1.20380.90370.25390.079*
C161.0618 (3)0.82300 (14)0.16465 (11)0.0573 (5)
H16A1.16840.78930.15490.069*
N10.0083 (2)0.25233 (14)0.25432 (10)0.0707 (5)
N20.5329 (3)0.13221 (16)0.25944 (11)0.0842 (6)
N30.0327 (3)0.55373 (19)0.09570 (13)0.0963 (7)
N40.88726 (18)0.80422 (10)0.12132 (8)0.0455 (3)
N50.9357 (3)0.94368 (12)0.23882 (10)0.0677 (4)
S10.12375 (6)0.10653 (3)0.06901 (3)0.05089 (13)
S20.28315 (7)0.01308 (3)0.07488 (3)0.05495 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.04532 (18)0.03877 (17)0.03648 (17)0.00199 (11)0.00463 (12)0.00037 (10)
C10.0529 (9)0.0417 (8)0.0406 (8)0.0064 (7)0.0085 (7)0.0019 (7)
C20.0511 (9)0.0440 (8)0.0423 (8)0.0041 (7)0.0051 (7)0.0038 (7)
C30.0564 (11)0.0559 (10)0.0541 (10)0.0060 (8)0.0036 (9)0.0140 (8)
C40.0470 (9)0.0544 (10)0.0508 (9)0.0046 (7)0.0094 (8)0.0047 (8)
C50.0449 (9)0.0502 (9)0.0585 (10)0.0017 (7)0.0079 (8)0.0081 (8)
C60.0608 (11)0.0711 (12)0.0473 (10)0.0045 (9)0.0033 (8)0.0033 (9)
C70.0599 (11)0.0661 (11)0.0531 (10)0.0045 (9)0.0135 (8)0.0121 (9)
C80.0461 (9)0.0454 (9)0.0512 (9)0.0015 (7)0.0118 (7)0.0002 (7)
C90.0520 (10)0.0547 (10)0.0463 (9)0.0037 (8)0.0074 (7)0.0036 (7)
C100.0533 (10)0.0555 (10)0.0577 (10)0.0076 (8)0.0147 (8)0.0039 (8)
C110.0542 (12)0.0750 (13)0.0690 (13)0.0025 (10)0.0059 (10)0.0086 (10)
C120.0479 (9)0.0575 (10)0.0587 (10)0.0046 (8)0.0153 (8)0.0027 (8)
C130.0464 (9)0.0524 (10)0.0664 (11)0.0008 (8)0.0066 (8)0.0011 (8)
C140.0634 (12)0.0577 (11)0.0791 (14)0.0017 (9)0.0111 (10)0.0062 (10)
C150.0651 (12)0.0559 (11)0.0669 (12)0.0098 (9)0.0091 (10)0.0106 (9)
C160.0455 (9)0.0546 (10)0.0673 (11)0.0028 (8)0.0006 (8)0.0099 (9)
N10.0665 (11)0.0800 (12)0.0676 (11)0.0002 (9)0.0182 (8)0.0250 (9)
N20.0671 (11)0.0967 (14)0.0773 (12)0.0143 (10)0.0129 (10)0.0363 (11)
N30.0612 (12)0.1261 (19)0.0940 (15)0.0216 (12)0.0021 (11)0.0063 (14)
N40.0427 (7)0.0434 (7)0.0499 (8)0.0049 (6)0.0080 (6)0.0103 (6)
N50.0823 (12)0.0551 (9)0.0618 (10)0.0071 (9)0.0051 (9)0.0015 (8)
S10.0477 (2)0.0538 (3)0.0488 (2)0.00206 (18)0.00416 (18)0.00887 (18)
S20.0479 (3)0.0615 (3)0.0517 (3)0.00499 (19)0.0009 (2)0.01617 (19)
Geometric parameters (Å, º) top
Ni1—S22.1674 (9)C8—C121.502 (2)
Ni1—S2i2.1674 (9)C9—C101.382 (2)
Ni1—S12.1704 (7)C9—H9A0.9300
Ni1—S1i2.1704 (7)C10—H10A0.9300
C1—C21.359 (2)C11—N31.138 (3)
C1—C41.430 (2)C12—N41.498 (2)
C1—S11.7302 (17)C12—H12A0.9700
C2—C31.426 (2)C12—H12B0.9700
C2—S21.7334 (18)C13—N41.330 (2)
C3—N21.143 (2)C13—C141.372 (3)
C4—N11.139 (2)C13—H13A0.9300
C5—C61.376 (3)C14—N51.322 (3)
C5—C101.390 (3)C14—H14A0.9300
C5—C111.445 (3)C15—N51.325 (3)
C6—C71.378 (3)C15—C161.368 (3)
C6—H6A0.9300C15—H15A0.9300
C7—C81.382 (2)C16—N41.337 (2)
C7—H7A0.9300C16—H16A0.9300
C8—C91.384 (2)
S2—Ni1—S2i180.00 (2)C9—C10—C5119.44 (17)
S2—Ni1—S192.96 (3)C9—C10—H10A120.3
S2i—Ni1—S187.04 (3)C5—C10—H10A120.3
S2—Ni1—S1i87.04 (3)N3—C11—C5178.5 (3)
S2i—Ni1—S1i92.96 (3)N4—C12—C8114.59 (14)
S1—Ni1—S1i180.00 (2)N4—C12—H12A108.6
C2—C1—C4121.29 (15)C8—C12—H12A108.6
C2—C1—S1120.95 (13)N4—C12—H12B108.6
C4—C1—S1117.76 (13)C8—C12—H12B108.6
C1—C2—C3121.67 (15)H12A—C12—H12B107.6
C1—C2—S2121.17 (12)N4—C13—C14118.57 (17)
C3—C2—S2117.14 (13)N4—C13—H13A120.7
N2—C3—C2178.3 (2)C14—C13—H13A120.7
N1—C4—C1179.3 (2)N5—C14—C13123.76 (19)
C6—C5—C10120.33 (16)N5—C14—H14A118.1
C6—C5—C11118.78 (17)C13—C14—H14A118.1
C10—C5—C11120.88 (17)N5—C15—C16122.83 (19)
C5—C6—C7119.54 (17)N5—C15—H15A118.6
C5—C6—H6A120.2C16—C15—H15A118.6
C7—C6—H6A120.2N4—C16—C15119.37 (18)
C6—C7—C8121.07 (17)N4—C16—H16A120.3
C6—C7—H7A119.5C15—C16—H16A120.3
C8—C7—H7A119.5C13—N4—C16119.44 (16)
C7—C8—C9119.00 (16)C13—N4—C12123.08 (14)
C7—C8—C12119.48 (16)C16—N4—C12117.47 (15)
C9—C8—C12121.42 (16)C14—N5—C15115.85 (18)
C10—C9—C8120.61 (16)C1—S1—Ni1102.41 (7)
C10—C9—H9A119.7C2—S2—Ni1102.28 (6)
C8—C9—H9A119.7
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula(C12H10N3)2[Ni(C4N2S2)2]
Mr731.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.115 (3), 13.623 (6), 17.186 (8)
β (°) 101.671 (5)
V3)1631.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.807, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
8060, 2871, 2586
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.074, 1.06
No. of reflections2871
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Science and Technology Department of Jiangsu Province, China (grant No. BK2007184).

References

First citationBigoli, F., Deplano, P., Mercuri, M. L., Pellinghelli, M. A., Pilia, L., Pintus, G., Serpe, A. & Trogu, E. F. (2002). Inorg. Chem. 41, 5241–5248.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDavison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8–26.  CrossRef CAS Google Scholar
First citationDuan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationPei, W.-B., Wu, J.-S., Tian, Z.-F., Ren, X.-M. & Song, Y. (2011). Inorg. Chem. 50, 3970–3980.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds