metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[1,2-bis­­(pyridin-4-yl)ethene]­bis­­[2-(4-carb­oxy­phen­yl)acetato]­cobalt(II)

aCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: duanhaibao4660@163.com

(Received 17 June 2011; accepted 23 June 2011; online 30 June 2011)

The asymmetric unit of the title compound, [Co(C9H7O4)2(C12H10N2)2(H2O)2], consists of one Co2+ ion, one mono-deprotonated 2-(4-carboxyl­atophen­yl)acetate carboxylic acid, one 1,2-bis­(pyridin-4-yl)ethane mol­ecule and one water mol­ecule. The CoII atom is situated on a crystallographic center of inversion and is octa­hedrally coordinated by two O atoms from two anions, two N atoms of two 1,2-bis­(pyridin-4-yl)ethane mol­ecules and two O atoms from two water mol­ecules. A three-dimensional network is established by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For general background to the design of metal-organic supra­molecular solids with potential functionality, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Janiak (2003[Janiak, C. (2003). Dalton Trans. pp. 2781-2804.]). For weak non-covalent inter­actions in supra­molecular solids, see: Hosseini (2005[Hosseini, M. W. (2005). Acc. Chem. Res. 38, 313-323.]); Nishio (2004[Nishio, M. (2004). CrystEngComn. 6, 130-158.]). For metal-organic supra­molecular frameworks based on organic connectors containing pyridyl and/or carboxyl­ate groups, see: Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H7O4)2(C12H10N2)2(H2O)2]

  • Mr = 817.69

  • Monoclinic, P 21 /c

  • a = 21.349 (5) Å

  • b = 5.6522 (12) Å

  • c = 15.659 (4) Å

  • β = 98.999 (4)°

  • V = 1866.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.874

  • 9499 measured reflections

  • 3635 independent reflections

  • 2640 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.105

  • S = 1.06

  • 3635 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O1i 0.73 (4) 2.13 (4) 2.822 (3) 158 (4)
O5—H5D⋯O2ii 0.98 (4) 1.74 (4) 2.610 (3) 145 (3)
O3—H3⋯N2iii 0.82 1.85 2.667 (3) 173
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the past decade, the design of new metal-organic supramolecular solids has attracted ever-increasing focus in the fields of coordination chemistry and crystal engineering, for the sake of developing desired crystalline materials with potential functionality (Moulton & Zaworotko, 2001; Janiak et al., 2003). Furthermore, it has been realised that weak noncovalent interactions such as hydrogen bonds, aromatic stacking, and van der Waals forces (Hosseini, 2005; Nishio, 2004) are crucial in the direction of such crystalline architectures. Hitherto, a variety of organic connectors containing pyridyl and/or carboxylate groups (Brammer, 2004) have been widely used to construct metal-organic supramolecular frameworks. Herein we report the crystal structure of the title compound (1).

The molecular structure of (1) is illustrated in Fig. 1. Compound (1) crystallizes in the monoclinic space group P21/c. The structure of (1) is a single molecule, in which the Co2+ center is situated on a crystallographic center of inversion. The coordination sphere of cobalt is a slightly distorted octahedron and consistes of by two O atoms from two mono-deprotonated (4-carboxyphenyl)acetate groups, two N atoms of two 1,2-di(pyridin-4-yl)ethane molecules and two O atoms from two water molecules. As shown in Fig. 2, a one-dimensional chain is formed by O–H···N hydrogen bonds. In addition, these one-dimensional chains are linked together by additional O—H···O hydrogen bonds between water molecules and the cobalt bound carboxylate group generating a three-dimensional framework.

Related literature top

For general background to the design of metal-organic supramolecular solids with potential functionality, see: Moulton & Zaworotko (2001); Janiak (2003). For weak non-covalent interactions in supramolecular solids, see: Hosseini (2005); Nishio (2004). For metal-organic supramolecular frameworks based on organic connectors containing pyridyl and/or carboxylate groups, see: Brammer (2004).

Experimental top

Cobalt chloride hexahydrate (1 mmol), 1,2-di(pyridin-4-yl)ethane (1 mmol) and (4-carboxyphenyl)acetic acid (1 mmol) in water (8 ml) were placed in a Teflon-lined stainless-steel Parr bomb that was heated to 433 K for 48 h. Red plate crystals were collected after the bomb was subsequently allowed to cool to room temperature (yield: 38%).

Refinement top

C-bound H atoms were placed geometrically (C—H = 0.93, and 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found relative positions (O—H =0.96 Å) with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional chain structure of (I).
Diaquabis[1,2-bis(pyridin-4-yl)ethene]bis[2-(4- carboxylphenyl)acetato]cobalt(II) top
Crystal data top
[Co(C9H7O4)2(C12H10N2)2(H2O)2]F(000) = 850
Mr = 817.69Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 870 reflections
a = 21.349 (5) Åθ = 2.6–22.1°
b = 5.6522 (12) ŵ = 0.53 mm1
c = 15.659 (4) ÅT = 293 K
β = 98.999 (4)°Plate, red
V = 1866.3 (7) Å30.40 × 0.30 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3635 independent reflections
Radiation source: fine-focus sealed tube2640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2623
Tmin = 0.850, Tmax = 0.874k = 66
9499 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.040P)2 + 0.440P]
where P = (Fo2 + 2Fc2)/3
3635 reflections(Δ/σ)max < 0.001
268 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C9H7O4)2(C12H10N2)2(H2O)2]V = 1866.3 (7) Å3
Mr = 817.69Z = 2
Monoclinic, P21/cMo Kα radiation
a = 21.349 (5) ŵ = 0.53 mm1
b = 5.6522 (12) ÅT = 293 K
c = 15.659 (4) Å0.40 × 0.30 × 0.10 mm
β = 98.999 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2640 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.874Rint = 0.041
9499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.71 e Å3
3635 reflectionsΔρmin = 0.36 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13939 (13)0.6024 (5)0.07330 (17)0.0285 (6)
H10.13080.73880.04040.034*
C20.21300 (13)0.3771 (6)0.16945 (19)0.0324 (7)
C30.16536 (14)0.2132 (6)0.1675 (2)0.0418 (8)
H3A0.17270.07500.19970.050*
C40.19847 (13)0.5792 (5)0.11978 (18)0.0305 (7)
H40.22870.69690.11830.037*
C50.10794 (14)0.2501 (5)0.11927 (19)0.0360 (7)
H5A0.07710.13380.11940.043*
C60.27478 (13)0.3325 (6)0.2271 (2)0.0446 (8)
H60.28050.20170.26350.053*
C70.32607 (15)0.5046 (7)0.2236 (2)0.0542 (9)
H70.32130.63480.18680.065*
C80.38736 (14)0.4545 (6)0.2844 (2)0.0435 (8)
C90.43624 (15)0.6125 (7)0.2885 (2)0.0480 (9)
H90.43170.74910.25490.058*
C100.49294 (15)0.5670 (6)0.3433 (2)0.0418 (8)
H100.52630.67300.34390.050*
C110.45391 (15)0.2330 (6)0.3909 (2)0.0467 (9)
H110.45880.10170.42710.056*
C120.39688 (15)0.2605 (6)0.3370 (2)0.0476 (9)
H120.36510.14770.33630.057*
C250.09958 (12)0.8462 (5)0.19283 (18)0.0311 (6)
H25A0.10550.79680.25040.037*
H25B0.07750.99680.19780.037*
C260.16362 (13)0.8760 (5)0.13681 (18)0.0290 (6)
C270.17905 (14)1.0732 (5)0.0867 (2)0.0333 (7)
H270.14971.19530.08810.040*
C280.23634 (15)1.0942 (6)0.0351 (2)0.0422 (8)
H280.24461.22720.00020.051*
C290.28176 (14)0.9246 (6)0.0335 (2)0.0387 (7)
C300.26777 (14)0.7226 (6)0.0820 (2)0.0447 (8)
H300.29780.60310.08110.054*
C310.20875 (14)0.6992 (6)0.1321 (2)0.0408 (8)
H310.19920.56070.16350.049*
C320.34424 (16)0.9532 (6)0.0221 (2)0.0494 (9)
C500.05974 (12)0.6632 (5)0.15437 (17)0.0237 (6)
Co10.00000.50000.00000.02453 (15)
H5C0.0226 (18)0.907 (7)0.078 (3)0.057 (13)*
H5D0.0072 (15)0.719 (6)0.134 (2)0.049 (10)*
N10.09278 (10)0.4435 (4)0.07147 (14)0.0278 (5)
N20.50139 (12)0.3794 (5)0.39444 (17)0.0417 (6)
O10.03952 (8)0.7233 (3)0.08597 (11)0.0252 (4)
O20.05249 (10)0.4649 (4)0.18973 (14)0.0392 (5)
O30.38617 (10)0.7984 (4)0.00934 (15)0.0448 (6)
H30.41910.82320.04260.067*
O40.35646 (11)1.1161 (4)0.07192 (15)0.0506 (6)
O50.00449 (10)0.7965 (4)0.07875 (14)0.0308 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (14)0.0263 (14)0.0317 (15)0.0001 (11)0.0015 (11)0.0051 (12)
C20.0228 (15)0.0414 (18)0.0314 (15)0.0045 (12)0.0004 (12)0.0013 (13)
C30.0411 (17)0.0279 (17)0.052 (2)0.0034 (14)0.0078 (14)0.0124 (15)
C40.0254 (14)0.0280 (16)0.0360 (16)0.0053 (11)0.0017 (12)0.0017 (12)
C50.0329 (15)0.0323 (17)0.0372 (17)0.0017 (13)0.0112 (12)0.0083 (13)
C60.0238 (16)0.050 (2)0.056 (2)0.0032 (14)0.0049 (14)0.0141 (17)
C70.0407 (18)0.056 (2)0.061 (2)0.0067 (18)0.0091 (15)0.023 (2)
C80.0303 (16)0.043 (2)0.055 (2)0.0009 (14)0.0020 (13)0.0019 (15)
C90.0383 (19)0.050 (2)0.053 (2)0.0036 (15)0.0021 (15)0.0131 (17)
C100.0357 (17)0.042 (2)0.0446 (19)0.0083 (14)0.0035 (14)0.0042 (14)
C110.0469 (19)0.0385 (19)0.0453 (19)0.0024 (15)0.0222 (15)0.0135 (15)
C120.0373 (18)0.051 (2)0.048 (2)0.0097 (16)0.0121 (15)0.0094 (17)
C250.0254 (14)0.0341 (17)0.0340 (15)0.0005 (12)0.0056 (12)0.0059 (13)
C260.0241 (14)0.0337 (16)0.0301 (15)0.0018 (12)0.0069 (11)0.0003 (12)
C270.0326 (16)0.0210 (16)0.0469 (18)0.0048 (11)0.0086 (13)0.0006 (12)
C280.0408 (19)0.0344 (18)0.054 (2)0.0039 (14)0.0135 (15)0.0099 (15)
C290.0296 (15)0.044 (2)0.0424 (17)0.0057 (13)0.0056 (13)0.0033 (14)
C300.0256 (15)0.052 (2)0.054 (2)0.0122 (15)0.0021 (13)0.0096 (17)
C310.0404 (17)0.0326 (17)0.0480 (19)0.0022 (14)0.0024 (14)0.0182 (14)
C320.0381 (18)0.053 (2)0.054 (2)0.0008 (16)0.0024 (15)0.0161 (18)
C500.0207 (12)0.0236 (15)0.0258 (13)0.0028 (11)0.0003 (10)0.0029 (11)
Co10.0269 (3)0.0223 (3)0.0237 (3)0.0004 (2)0.00182 (19)0.0014 (2)
N10.0252 (12)0.0271 (13)0.0307 (12)0.0007 (9)0.0033 (9)0.0002 (9)
N20.0315 (14)0.0433 (16)0.0461 (16)0.0071 (12)0.0069 (12)0.0035 (13)
O10.0242 (9)0.0268 (10)0.0264 (10)0.0013 (8)0.0093 (8)0.0018 (8)
O20.0491 (13)0.0258 (12)0.0478 (13)0.0078 (10)0.0238 (10)0.0055 (9)
O30.0347 (12)0.0444 (14)0.0466 (13)0.0077 (11)0.0200 (10)0.0051 (11)
O40.0511 (15)0.0463 (14)0.0473 (14)0.0075 (11)0.0141 (11)0.0127 (12)
O50.0390 (11)0.0199 (11)0.0365 (12)0.0029 (9)0.0150 (9)0.0008 (9)
Geometric parameters (Å, º) top
C1—N11.338 (3)C25—H25A0.9700
C1—C41.360 (4)C25—H25B0.9700
C1—H10.9300C26—C271.373 (4)
C2—C31.373 (4)C26—C311.382 (4)
C2—C41.389 (4)C27—C281.362 (4)
C2—C61.498 (4)C27—H270.9300
C3—C51.352 (4)C28—C291.361 (4)
C3—H3A0.9300C28—H280.9300
C4—H40.9300C29—C301.378 (5)
C5—N11.335 (4)C29—C321.483 (4)
C5—H5A0.9300C30—C311.383 (4)
C6—C71.472 (5)C30—H300.9300
C6—H60.9300C31—H310.9300
C7—C81.520 (4)C32—O41.209 (4)
C7—H70.9300C32—O31.290 (4)
C8—C121.367 (5)C50—O21.249 (3)
C8—C91.367 (5)C50—O11.262 (3)
C9—C101.394 (4)Co1—O52.092 (2)
C9—H90.9300Co1—O5i2.092 (2)
C10—N21.324 (4)Co1—O1i2.1149 (17)
C10—H100.9300Co1—O12.1149 (17)
C11—N21.303 (4)Co1—N1i2.141 (2)
C11—C121.378 (4)Co1—N12.141 (2)
C11—H110.9300O3—H30.8200
C12—H120.9300O5—H5C0.73 (4)
C25—C261.514 (4)O5—H5D0.98 (4)
C25—C501.522 (4)
N1—C1—C4124.8 (3)C28—C27—C26121.5 (3)
N1—C1—H1117.6C28—C27—H27119.2
C4—C1—H1117.6C26—C27—H27119.2
C3—C2—C4116.3 (3)C29—C28—C27121.4 (3)
C3—C2—C6118.6 (3)C29—C28—H28119.3
C4—C2—C6125.0 (3)C27—C28—H28119.3
C5—C3—C2120.8 (3)C28—C29—C30118.7 (3)
C5—C3—H3A119.6C28—C29—C32120.5 (3)
C2—C3—H3A119.6C30—C29—C32120.8 (3)
C1—C4—C2119.1 (3)C29—C30—C31119.5 (3)
C1—C4—H4120.5C29—C30—H30120.3
C2—C4—H4120.5C31—C30—H30120.3
N1—C5—C3124.0 (3)C26—C31—C30121.8 (3)
N1—C5—H5A118.0C26—C31—H31119.1
C3—C5—H5A118.0C30—C31—H31119.1
C7—C6—C2117.1 (3)O4—C32—O3122.1 (3)
C7—C6—H6121.4O4—C32—C29123.0 (3)
C2—C6—H6121.4O3—C32—C29114.7 (3)
C6—C7—C8115.2 (3)O2—C50—O1125.6 (2)
C6—C7—H7122.4O2—C50—C25118.2 (2)
C8—C7—H7122.4O1—C50—C25116.1 (2)
C12—C8—C9117.1 (3)O5—Co1—O5i180.00 (10)
C12—C8—C7124.0 (3)O5—Co1—O1i92.48 (8)
C9—C8—C7118.9 (3)O5i—Co1—O1i87.52 (8)
C8—C9—C10119.4 (3)O5—Co1—O187.52 (8)
C8—C9—H9120.3O5i—Co1—O192.48 (8)
C10—C9—H9120.3O1i—Co1—O1180.00 (7)
N2—C10—C9122.9 (3)O5—Co1—N1i93.70 (9)
N2—C10—H10118.5O5i—Co1—N1i86.30 (9)
C9—C10—H10118.5O1i—Co1—N1i89.61 (8)
N2—C11—C12124.1 (3)O1—Co1—N1i90.39 (8)
N2—C11—H11117.9O5—Co1—N186.30 (9)
C12—C11—H11117.9O5i—Co1—N193.70 (9)
C8—C12—C11119.6 (3)O1i—Co1—N190.39 (8)
C8—C12—H12120.2O1—Co1—N189.61 (8)
C11—C12—H12120.2N1i—Co1—N1180.00 (13)
C26—C25—C50110.9 (2)C5—N1—C1115.0 (2)
C26—C25—H25A109.5C5—N1—Co1122.57 (19)
C50—C25—H25A109.5C1—N1—Co1122.36 (19)
C26—C25—H25B109.5C11—N2—C10116.8 (3)
C50—C25—H25B109.5C50—O1—Co1127.08 (17)
H25A—C25—H25B108.1C32—O3—H3109.5
C27—C26—C31117.0 (3)Co1—O5—H5C138 (3)
C27—C26—C25122.4 (3)Co1—O5—H5D100 (2)
C31—C26—C25120.6 (3)H5C—O5—H5D107 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O1ii0.73 (4)2.13 (4)2.822 (3)158 (4)
O5—H5D···O2i0.98 (4)1.74 (4)2.610 (3)145 (3)
O3—H3···N2iii0.821.852.667 (3)173
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C9H7O4)2(C12H10N2)2(H2O)2]
Mr817.69
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.349 (5), 5.6522 (12), 15.659 (4)
β (°) 98.999 (4)
V3)1866.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.850, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
9499, 3635, 2640
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.105, 1.06
No. of reflections3635
No. of parameters268
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O1i0.73 (4)2.13 (4)2.822 (3)158 (4)
O5—H5D···O2ii0.98 (4)1.74 (4)2.610 (3)145 (3)
O3—H3···N2iii0.821.852.667 (3)172.7
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Nanjing Xiaozhuang College of China for financial support (grant No. 2007NXY31).

References

First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHosseini, M. W. (2005). Acc. Chem. Res. 38, 313–323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2003). Dalton Trans. pp. 2781–2804.  Web of Science CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishio, M. (2004). CrystEngComn. 6, 130–158.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds