organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Carb­­oxy­methyl-3-octylimidazolium bromide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 26 May 2011; accepted 7 June 2011; online 18 June 2011)

In the title compound, C13H23N2O2+·Br, the octyl chain has an all-trans conformation. In the crystal, the cations are linked by C—H⋯O bonds into a zigzag chain along the b axis. The bromide anions further link the chains via C—H⋯Br inter­actions into a two-dimensional array parallel to the ab plane. An O—H⋯Br interaction is also observed.

Related literature

For related structures, see: Wei et al. (2009[Wei, Z., Wei, X., Fu, S., Liu, J. & Zhang, D. (2009). Acta Cryst. E65, o1159.]); Chen et al. (2009[Chen, Y., Song, W., Xu, J., Yang, X.-R. & Tian, D.-B. (2009). Acta Cryst. E65, o2617.]).

[Scheme 1]

Experimental

Crystal data
  • C13H23N2O2+·Br

  • Mr = 319.24

  • Monoclinic, P 21 /c

  • a = 7.6745 (2) Å

  • b = 4.6176 (1) Å

  • c = 41.8663 (9) Å

  • β = 92.167 (1)°

  • V = 1482.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 100 K

  • 0.21 × 0.19 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.851

  • 10905 measured reflections

  • 2761 independent reflections

  • 2678 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.095

  • S = 1.43

  • 2761 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −2.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯Br1i 0.99 2.89 3.772 (4) 148
C5—H5⋯Br1ii 0.95 2.91 3.681 (4) 139
C4—H4⋯O2iii 0.95 2.25 3.151 (5) 158
C3—H3⋯Br1i 0.95 2.82 3.593 (4) 139
C2—H2B⋯Br1iv 0.99 2.90 3.676 (4) 136
C2—H2A⋯O2v 0.99 2.44 3.328 (5) 150
O1—H1⋯Br1 0.84 (2) 2.33 (2) 3.153 (3) 168 (4)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The imidazolium ring is N-bound to a long alkyl chain, namely an octyl chain, and a carboxymethyl group. The alkyl chain adopts an all-trans conformation, as observed in similar structures (Wei et al., 2009; Chen et al., 2009). The carboxy group and the imidazolium ring subtend an N1—C2—C1 angle of 110.7 (3)°. In the crystal, the cationic moieties are bonded via C—H···O interactions (Table 1) into infinite chains along the b axis. The bromide anions link the cationic chains through C—H···Br interactions into layers parallel to the ab plane (Fig. 2).

Related literature top

For related structures, see: Wei et al. (2009); Chen et al. (2009).

Experimental top

A solution of bromoacetic acid (1 g, 7.2 mmol) and octylimidazole (1.29 g, 7.2 mmol) in dry 1,4-dioxane (10 ml) was stirred under nitrogen atmosphere at 70 °C for 7 hr. The solution was then poured into dichloromethane (25 ml) and extracted with distilled water (50 ml). The aqueous solution was evaporated under vacuum to give a viscous oil which crystallized from THF to yield the colorless crystals of the title compound.

Refinement top

The C-bound H atoms were placed at calculated positions [C—H distances of 0.95 (Ar), 0.98 (methyl) and 0.99 (methylene) Å] and refined as riding atoms, with Uiso(H) set to 1.2(1.5 for methyl)Ueq(C). The carboxylic hydrogen atom was located in a difference Fourier map and refind with a dinstance restraint of O—H 0.84 (2) Å. The maximum and minimum residual electron density peaks of 1.25 and -2.19 e Å-3, respectively, were located 2.06 and 1.85 Å from atom Br1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing view looking down the crystallographic b axis.
1-Carboxymethyl-3-octylimidazolium bromide top
Crystal data top
C13H23N2O2+·BrF(000) = 664
Mr = 319.24Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9093 reflections
a = 7.6745 (2) Åθ = 2.7–30.4°
b = 4.6176 (1) ŵ = 2.77 mm1
c = 41.8663 (9) ÅT = 100 K
β = 92.167 (1)°Plate, colorless
V = 1482.59 (6) Å30.21 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2761 independent reflections
Radiation source: fine-focus sealed tube2678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.594, Tmax = 0.851k = 55
10905 measured reflectionsl = 5050
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.43 w = 1/[σ2(Fo2) + (0.P)2 + 5.6415P]
where P = (Fo2 + 2Fc2)/3
2761 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 1.25 e Å3
1 restraintΔρmin = 2.19 e Å3
Crystal data top
C13H23N2O2+·BrV = 1482.59 (6) Å3
Mr = 319.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6745 (2) ŵ = 2.77 mm1
b = 4.6176 (1) ÅT = 100 K
c = 41.8663 (9) Å0.21 × 0.19 × 0.06 mm
β = 92.167 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2761 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2678 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.851Rint = 0.023
10905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.43Δρmax = 1.25 e Å3
2761 reflectionsΔρmin = 2.19 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10811 (5)0.60448 (9)0.158623 (9)0.01633 (12)
O10.1327 (4)0.9207 (7)0.22540 (7)0.0206 (6)
H10.140 (6)0.823 (9)0.2087 (7)0.025*
O20.3056 (4)0.5633 (7)0.24528 (7)0.0223 (7)
N10.3042 (4)0.7879 (7)0.30550 (7)0.0135 (7)
N20.3636 (4)0.4977 (8)0.34476 (7)0.0141 (7)
C10.2224 (5)0.7809 (9)0.24846 (9)0.0145 (8)
C20.2071 (6)0.9390 (9)0.27999 (9)0.0179 (9)
H2A0.25301.13830.27800.021*
H2B0.08290.95240.28530.021*
C30.2346 (5)0.6121 (9)0.32676 (9)0.0144 (8)
H30.11370.57470.32870.017*
C40.4832 (5)0.7869 (10)0.31017 (10)0.0191 (9)
H40.56480.89270.29830.023*
C50.5201 (5)0.6074 (10)0.33479 (9)0.0191 (9)
H50.63280.56400.34370.023*
C60.3422 (5)0.3118 (9)0.37260 (9)0.0168 (9)
H6A0.44750.19000.37590.020*
H6B0.24130.18160.36860.020*
C70.3137 (5)0.4881 (9)0.40246 (9)0.0163 (8)
H7A0.20550.60320.39940.020*
H7B0.41200.62480.40590.020*
C80.2994 (5)0.2982 (9)0.43200 (9)0.0172 (8)
H8A0.40690.18090.43480.021*
H8B0.20020.16320.42860.021*
C90.2731 (5)0.4719 (9)0.46238 (9)0.0158 (8)
H9A0.37170.60830.46560.019*
H9B0.16510.58790.45960.019*
C100.2602 (6)0.2852 (10)0.49212 (10)0.0195 (9)
H10A0.36840.16970.49490.023*
H10B0.16180.14840.48890.023*
C110.2332 (5)0.4592 (9)0.52259 (9)0.0162 (9)
H11A0.33150.59650.52580.019*
H11B0.12500.57440.51980.019*
C120.2207 (6)0.2733 (10)0.55249 (9)0.0196 (9)
H12A0.32900.15860.55540.023*
H12B0.12250.13590.54940.023*
C130.1934 (6)0.4506 (10)0.58268 (9)0.0215 (10)
H13A0.29260.58140.58640.032*
H13B0.18400.31990.60100.032*
H13C0.08600.56430.58000.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0160 (2)0.0183 (2)0.01477 (19)0.00006 (18)0.00112 (13)0.00132 (18)
O10.0278 (15)0.0187 (17)0.0153 (14)0.0039 (14)0.0000 (12)0.0001 (13)
O20.0315 (16)0.0190 (18)0.0164 (14)0.0086 (14)0.0024 (12)0.0021 (13)
N10.0177 (16)0.0132 (17)0.0098 (15)0.0009 (14)0.0026 (13)0.0002 (13)
N20.0145 (16)0.0162 (17)0.0118 (16)0.0005 (14)0.0018 (13)0.0000 (13)
C10.0155 (19)0.015 (2)0.0131 (19)0.0032 (17)0.0029 (15)0.0017 (16)
C20.027 (2)0.010 (2)0.0162 (19)0.0048 (18)0.0005 (16)0.0010 (16)
C30.0160 (18)0.0128 (19)0.0144 (18)0.0016 (17)0.0004 (14)0.0021 (17)
C40.0145 (19)0.025 (2)0.018 (2)0.0043 (18)0.0032 (16)0.0028 (18)
C50.0131 (18)0.026 (2)0.018 (2)0.0021 (19)0.0008 (15)0.0008 (19)
C60.021 (2)0.010 (2)0.019 (2)0.0004 (17)0.0022 (16)0.0039 (16)
C70.0177 (19)0.016 (2)0.0150 (19)0.0011 (17)0.0002 (15)0.0010 (16)
C80.0175 (19)0.015 (2)0.019 (2)0.0016 (17)0.0007 (16)0.0014 (17)
C90.0159 (19)0.015 (2)0.0166 (19)0.0021 (16)0.0006 (15)0.0014 (16)
C100.020 (2)0.020 (2)0.019 (2)0.0037 (18)0.0011 (16)0.0003 (18)
C110.0158 (19)0.014 (2)0.019 (2)0.0012 (16)0.0013 (16)0.0010 (17)
C120.021 (2)0.021 (2)0.017 (2)0.0009 (18)0.0031 (16)0.0011 (18)
C130.025 (2)0.024 (3)0.016 (2)0.0012 (19)0.0033 (16)0.0001 (18)
Geometric parameters (Å, º) top
O1—C11.332 (5)C7—H7A0.9900
O1—H10.837 (19)C7—H7B0.9900
O2—C11.200 (5)C8—C91.524 (5)
N1—C31.331 (5)C8—H8A0.9900
N1—C41.381 (5)C8—H8B0.9900
N1—C21.457 (5)C9—C101.521 (6)
N2—C31.331 (5)C9—H9A0.9900
N2—C51.382 (5)C9—H9B0.9900
N2—C61.462 (5)C10—C111.528 (6)
C1—C21.517 (5)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C11—C121.524 (6)
C3—H30.9500C11—H11A0.9900
C4—C51.344 (6)C11—H11B0.9900
C4—H40.9500C12—C131.527 (6)
C5—H50.9500C12—H12A0.9900
C6—C71.515 (6)C12—H12B0.9900
C6—H6A0.9900C13—H13A0.9800
C6—H6B0.9900C13—H13B0.9800
C7—C81.523 (5)C13—H13C0.9800
C1—O1—H1107 (3)C7—C8—C9113.0 (3)
C3—N1—C4109.0 (3)C7—C8—H8A109.0
C3—N1—C2125.1 (3)C9—C8—H8A109.0
C4—N1—C2125.7 (3)C7—C8—H8B109.0
C3—N2—C5108.6 (3)C9—C8—H8B109.0
C3—N2—C6125.5 (3)H8A—C8—H8B107.8
C5—N2—C6125.5 (3)C10—C9—C8113.6 (3)
O2—C1—O1126.0 (4)C10—C9—H9A108.9
O2—C1—C2123.9 (4)C8—C9—H9A108.9
O1—C1—C2110.0 (3)C10—C9—H9B108.9
N1—C2—C1110.7 (3)C8—C9—H9B108.9
N1—C2—H2A109.5H9A—C9—H9B107.7
C1—C2—H2A109.5C9—C10—C11113.6 (4)
N1—C2—H2B109.5C9—C10—H10A108.8
C1—C2—H2B109.5C11—C10—H10A108.8
H2A—C2—H2B108.1C9—C10—H10B108.8
N2—C3—N1108.2 (3)C11—C10—H10B108.8
N2—C3—H3125.9H10A—C10—H10B107.7
N1—C3—H3125.9C12—C11—C10113.9 (3)
C5—C4—N1106.9 (4)C12—C11—H11A108.8
C5—C4—H4126.6C10—C11—H11A108.8
N1—C4—H4126.6C12—C11—H11B108.8
C4—C5—N2107.3 (3)C10—C11—H11B108.8
C4—C5—H5126.3H11A—C11—H11B107.7
N2—C5—H5126.3C11—C12—C13113.1 (4)
N2—C6—C7111.5 (3)C11—C12—H12A109.0
N2—C6—H6A109.3C13—C12—H12A109.0
C7—C6—H6A109.3C11—C12—H12B109.0
N2—C6—H6B109.3C13—C12—H12B109.0
C7—C6—H6B109.3H12A—C12—H12B107.8
H6A—C6—H6B108.0C12—C13—H13A109.5
C6—C7—C8112.2 (3)C12—C13—H13B109.5
C6—C7—H7A109.2H13A—C13—H13B109.5
C8—C7—H7A109.2C12—C13—H13C109.5
C6—C7—H7B109.2H13A—C13—H13C109.5
C8—C7—H7B109.2H13B—C13—H13C109.5
H7A—C7—H7B107.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Br1i0.992.893.772 (4)148
C5—H5···Br1ii0.952.913.681 (4)139
C4—H4···O2iii0.952.253.151 (5)158
C3—H3···Br1i0.952.823.593 (4)139
C2—H2B···Br1iv0.992.903.676 (4)136
C2—H2A···O2v0.992.443.328 (5)150
O1—H1···Br10.84 (2)2.33 (2)3.153 (3)168 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H23N2O2+·Br
Mr319.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.6745 (2), 4.6176 (1), 41.8663 (9)
β (°) 92.167 (1)
V3)1482.59 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.77
Crystal size (mm)0.21 × 0.19 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.594, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
10905, 2761, 2678
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.095, 1.43
No. of reflections2761
No. of parameters167
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 2.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Br1i0.992.893.772 (4)148
C5—H5···Br1ii0.952.913.681 (4)139
C4—H4···O2iii0.952.253.151 (5)158
C3—H3···Br1i0.952.823.593 (4)139
C2—H2B···Br1iv0.992.903.676 (4)136
C2—H2A···O2v0.992.443.328 (5)150
O1—H1···Br10.837 (19)2.33 (2)3.153 (3)168 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Song, W., Xu, J., Yang, X.-R. & Tian, D.-B. (2009). Acta Cryst. E65, o2617.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Z., Wei, X., Fu, S., Liu, J. & Zhang, D. (2009). Acta Cryst. E65, o1159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds