supplementary materials


is2730 scheme

Acta Cryst. (2011). E67, o1569    [ doi:10.1107/S1600536811022148 ]

N-Paranitrophénylhydrazono-[alpha]-(2-méthylbenzimidazol-1-yl)glyoxylate d'éthyle

A. Boudina, A. Baouid, M. Driss et E. H. Soumhi

Abstract top

There are two independent molecules in the asymmetric unit of the title compound {systematic name: ethyl 2-(2-methyl-1H-benzimidazol-1-yl)-2-[2-(4-nitrophenyl)hydrazinylidene]ethanoate}, C18H17N5O4. Each molecule and its inversion-related partner are linked by a pair of intermolecular N-H...N hydrogen bonds, forming inversion dimers in the crystal structure.

Comment top

Les composés présentant un hétérocycle de différente taille accolé à un autre hétérocycle azoté à sept chaînons révélaient dans certains cas des propriétés pharmacologiques remarquables (Bellantuono et al., 1980; Bartsch & Erker, 1988). Dans ce contexte, notre équipe de recherche s'est intéressée à la synthèse de nouvelles molécules dérivées des benzodiazépines et benzotriazépines possédant des structures homologues à des composés biologiquement actifs (Baouid et al., 1996; El Hazazi et al., 2000; Jalal et al., 2002).

Développant ce travail, nous avons examiné le comportement de la [1,2,4]triazolo [4,3-a][1,5]benzodiazépine 1 (Baouid et al., 1994) vis-à-vis de α,α,α-trichloroéthane avec le diméthylformamide (DMF) moyennant le Mg-Barbier. L'objectif de cette réaction est la formation des aziridines polysubstitués à partir de l'imine et le α,α,α-trichloroéthane. Alors un produit inattendu est obtenu (Fig. 1). La réaction est effectuée dans le DMF, à une température comprise entre 5°C et 15 °C. Opérant avec un équivalent de DMF et la solution de trichloroéthane en présence de Mg-Barbier, on obtient après agitation du mélange réactionnel pendant une journée, le produit 2 avec un rendement de 60%. Dans cette réaction le DMF joue le rôle du catalyseur et de solvant puisque aucune réaction n'a eu lieu dans le diéthyléther ou dans le tétrahydrofurane (THF) au lieu de DMF.

L'évolution de la réaction a été suivie par la chromatographie sous couche mince (CCM). La formation du composé 2 s'explique vraisemblablement par un réarrangement sigmatropique-1,3 du cycle à sept éléments (Rossi et al., 1960), suivie de la perte du styrène aboutissant à un intermédiaire très instable qui se transpose à son tour pour conduire au produit réarrangé 2.

L'étude cristallographique a permis de déterminer clairement la stéréochimie du produit 2 (Fig. 2) et confirme ainsi le réarrangement du cycle à sept éléments suivi de la perte du styréne. La structure de ce composé, objet d'étude, cristallise dans le systéme triclinique, groupe d'espace P1, avec les paramètres de maille suivants: a = 8.269 (3) Å; b = 11.523 (2) Å; c = 19.853 (6) Å. L'unité asymétrique est formée de deux molécules cristallographiquement indépendantes A et B de formule identique: C18H17N5O4. Dans chaque molécule,le cycle 1–3,benzodiazole est pratiquement plan et présente un écart á la planéité de 0.0164 Å dans la molécule A et de 0.0098 Å dans B. Les caractéristiques géométriques de ce composé restent en bon accord avec celles observées dans d'autres composés simulaires (Chiaroni et al., 1995; El Hazazi et al., 2000).

Related literature top

Pour le contexte général des derivées des benzodiazépines et benzotriazépines, voir: Bellantuono et al. (1980); Bartsch & Erker (1988); Baouid et al. (1994, 1996); Jalal et al. (2002); Rossi et al. (1960). Pour structures associées, voir: Chiaroni et al. (1995); El Hazazi et al. (2000).

Experimental top

La réaction est effectuée dans les conditions de Mg-Barbier en présence de DMF. Le magnésium (5,4 mmoles) est suspendu dans 40 ml de DMF dans un ballon tricol muni d'un thermomètre et d'une ampoule à brome, et refroidie à une température T < 5 °C. La moitié de la solution contenant le monocycloadduit 1 (0,54 mmoles), le α,α,α-trichloroéthane (0,65 mmoles) et DMF (5 ml) est ajouté rapidement au mélange réactionnel. Le reste du réactant est additionné durant 5 min, puis la réaction est agitée fortement et elle est suivie par chromatographie sur couche mince jusqu'à la consommation complète du monocycloadduit 1. Après traitement habituel du mélange réactionnel, le résidu obtenu est chromatographié sur colonne de gel de silice puis recristallisé dans l'acétate d'éthyle pour isoler le produit 2. Ce composé est obtenu avec un rendement de 60%. Solide beige; P.F. 201–202 °C.

Refinement top

Tous les atomes d'hydrogène ont été localisés par Fourier différence et affinés selon le modèle rigide avec C—H = 0.96 Å, Uiso(H) = 1.2Ueq(C) pour les atomes CH3, C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) pour les atomes CH2, C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) pour les atomes CH et N—H = 0.86 Å, Uiso(H) = 1.2Ueq(N) pour les atomes NH.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Schéma réactionnel du composé étudié.
[Figure 2] Fig. 2. Représentation ORTEP de la structure avec les spheères d'atomes à 50% de probabilité.
Ethyl 2-(2-methyl-1H-benzimidazol-1-yl)-2-[2-(4- nitrophenyl)hydrazinylidene]ethanoate top
Crystal data top
C18H17N5O4Z = 4
Mr = 367.37F(000) = 768
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.269 (3) ÅCell parameters from 25 reflections
b = 11.523 (2) Åθ = 10–15°
c = 19.853 (6) ŵ = 0.10 mm1
α = 87.44 (2)°T = 300 K
β = 80.67 (3)°Plate, yellow
γ = 76.80 (2)°0.4 × 0.18 × 0.12 mm
V = 1817.3 (9) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.8°
graphiteh = 1010
ω/2θ scansk = 114
9121 measured reflectionsl = 2525
7912 independent reflections2 standard reflections every 60 min
4441 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.2299P]
where P = (Fo2 + 2Fc2)/3
7912 reflections(Δ/σ)max < 0.001
492 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H17N5O4γ = 76.80 (2)°
Mr = 367.37V = 1817.3 (9) Å3
Triclinic, P1Z = 4
a = 8.269 (3) ÅMo Kα radiation
b = 11.523 (2) ŵ = 0.10 mm1
c = 19.853 (6) ÅT = 300 K
α = 87.44 (2)°0.4 × 0.18 × 0.12 mm
β = 80.67 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
9121 measured reflectionsθmax = 27.0°
7912 independent reflections2 standard reflections every 60 min
4441 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.17 e Å3
S = 1.01Δρmin = 0.19 e Å3
7912 reflectionsAbsolute structure: ?
492 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1114 (2)0.22059 (13)0.65166 (8)0.0725 (4)
O21.0965 (2)0.08283 (15)0.72248 (9)0.0889 (6)
O30.3711 (2)0.25412 (13)0.32862 (8)0.0678 (4)
O40.54009 (18)0.07952 (12)0.35251 (7)0.0590 (4)
N11.0594 (2)0.11839 (15)0.67144 (9)0.0553 (4)
N20.64051 (19)0.20284 (12)0.51891 (8)0.0474 (4)
HN20.60360.27570.53170.057*
N30.59856 (19)0.16436 (12)0.46301 (8)0.0444 (4)
N40.41859 (18)0.35473 (12)0.44852 (7)0.0415 (3)
N50.33720 (19)0.55351 (12)0.44995 (8)0.0486 (4)
C10.9503 (2)0.03414 (16)0.63150 (9)0.0455 (4)
C20.8921 (2)0.07698 (16)0.57840 (9)0.0498 (5)
H20.92240.15780.56830.060*
C30.7888 (2)0.00099 (15)0.54058 (10)0.0479 (4)
H30.74810.02700.50490.058*
C40.7457 (2)0.12177 (14)0.55599 (9)0.0418 (4)
C50.8045 (3)0.16319 (16)0.60991 (10)0.0541 (5)
H50.77500.24400.62020.065*
C60.9061 (3)0.08517 (17)0.64807 (11)0.0557 (5)
H60.94460.11240.68460.067*
C70.5006 (2)0.23631 (15)0.42798 (9)0.0426 (4)
C80.4626 (2)0.19271 (17)0.36421 (10)0.0478 (4)
C90.5146 (3)0.0271 (2)0.29101 (11)0.0681 (6)
H9A0.56550.06430.25080.082*
H9B0.39550.03780.28940.082*
C100.5964 (3)0.1029 (2)0.29373 (13)0.0821 (8)
H10A0.58400.14120.25350.098*
H10B0.54390.13860.33340.098*
H10C0.71380.11210.29600.098*
C110.2933 (2)0.38263 (15)0.50564 (9)0.0425 (4)
C120.2219 (2)0.31282 (17)0.55511 (10)0.0518 (5)
H120.25770.23020.55550.062*
C130.0942 (3)0.3723 (2)0.60408 (11)0.0611 (5)
H130.04340.32850.63820.073*
C140.0407 (3)0.4952 (2)0.60341 (11)0.0638 (6)
H140.04620.53210.63670.077*
C150.1138 (3)0.56380 (19)0.55427 (11)0.0581 (5)
H150.07730.64640.55400.070*
C160.2435 (2)0.50651 (15)0.50501 (10)0.0449 (4)
C170.4368 (2)0.46180 (15)0.41703 (9)0.0433 (4)
C180.5558 (3)0.46803 (18)0.35304 (10)0.0565 (5)
H18A0.50170.46180.31450.068*
H18B0.65300.40370.35240.068*
H18C0.58960.54260.35090.068*
O50.7356 (3)0.28956 (17)0.17974 (11)0.1057 (7)
O60.7618 (2)0.43406 (17)0.25022 (9)0.0879 (5)
O70.25402 (19)0.73598 (13)0.15264 (8)0.0698 (4)
O80.04397 (17)0.57184 (12)0.14022 (7)0.0583 (4)
N60.6970 (2)0.39426 (18)0.19733 (11)0.0673 (5)
N70.1779 (2)0.70257 (13)0.03046 (8)0.0512 (4)
HN70.15030.77650.04180.061*
N80.0946 (2)0.65968 (13)0.02521 (8)0.0482 (4)
N90.10387 (19)0.84754 (13)0.04199 (8)0.0466 (4)
N100.2019 (2)1.04477 (14)0.05012 (9)0.0562 (4)
C190.5655 (2)0.47559 (17)0.15198 (10)0.0507 (5)
C200.4804 (3)0.42932 (18)0.09549 (11)0.0580 (5)
H200.50920.34840.08530.069 (6)*
C210.3523 (3)0.50385 (17)0.05419 (10)0.0542 (5)
H210.29410.47320.01610.065*
C220.3101 (2)0.62482 (15)0.06951 (9)0.0435 (4)
C230.3984 (2)0.66996 (17)0.12683 (10)0.0532 (5)
H230.37110.75100.13700.064*
C240.5258 (2)0.59540 (18)0.16848 (10)0.0544 (5)
H240.58400.62520.20690.065*
C250.0334 (2)0.72821 (16)0.06040 (9)0.0468 (4)
C260.1234 (3)0.68024 (17)0.12275 (10)0.0505 (5)
C270.1237 (3)0.52064 (19)0.20149 (10)0.0628 (6)
H27A0.24070.52420.19860.075*
H27B0.11910.56460.24140.075*
C280.0312 (3)0.3948 (2)0.20676 (13)0.0821 (7)
H28A0.08500.39230.20820.098*
H28B0.03990.35150.16780.098*
H28C0.07880.35930.24760.098*
C290.1922 (2)0.88137 (17)0.01301 (10)0.0495 (5)
C300.2235 (3)0.8165 (2)0.06471 (11)0.0635 (6)
H300.18330.73440.06800.076*
C310.3176 (3)0.8807 (3)0.11099 (13)0.0794 (7)
H310.33960.84080.14700.095*
C320.3802 (3)1.0024 (3)0.10548 (15)0.0858 (8)
H320.44431.04210.13740.103*
C330.3497 (3)1.0659 (2)0.05372 (14)0.0732 (7)
H330.39301.14770.05020.088*
C340.2524 (2)1.00450 (18)0.00674 (11)0.0547 (5)
C350.1178 (2)0.95001 (17)0.07824 (10)0.0491 (5)
C360.0474 (3)0.9487 (2)0.14211 (11)0.0652 (6)
H36A0.02721.02580.14900.078*
H36B0.05650.88990.13900.078*
H36C0.12570.92960.17980.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0922 (12)0.0459 (9)0.0725 (10)0.0069 (8)0.0251 (9)0.0030 (7)
O20.1183 (15)0.0768 (11)0.0719 (11)0.0034 (10)0.0501 (10)0.0072 (9)
O30.0838 (11)0.0588 (9)0.0641 (9)0.0081 (8)0.0328 (8)0.0002 (7)
O40.0719 (9)0.0507 (8)0.0512 (8)0.0031 (7)0.0112 (7)0.0159 (6)
N10.0613 (10)0.0521 (10)0.0494 (10)0.0047 (8)0.0121 (8)0.0042 (8)
N20.0582 (10)0.0301 (7)0.0543 (9)0.0046 (7)0.0170 (8)0.0029 (7)
N30.0513 (9)0.0366 (8)0.0456 (8)0.0085 (7)0.0100 (7)0.0019 (7)
N40.0456 (8)0.0331 (7)0.0457 (8)0.0070 (6)0.0096 (7)0.0008 (6)
N50.0521 (9)0.0340 (8)0.0625 (10)0.0073 (7)0.0216 (8)0.0026 (7)
C10.0487 (10)0.0400 (10)0.0456 (10)0.0055 (8)0.0085 (8)0.0039 (8)
C20.0616 (12)0.0337 (9)0.0503 (11)0.0034 (9)0.0076 (9)0.0020 (8)
C30.0607 (12)0.0352 (9)0.0486 (10)0.0071 (8)0.0155 (9)0.0023 (8)
C40.0445 (10)0.0335 (9)0.0472 (10)0.0086 (7)0.0076 (8)0.0015 (7)
C50.0680 (13)0.0328 (9)0.0643 (13)0.0080 (9)0.0216 (10)0.0052 (9)
C60.0648 (13)0.0459 (11)0.0614 (13)0.0106 (10)0.0260 (10)0.0049 (9)
C70.0460 (10)0.0353 (9)0.0452 (10)0.0070 (8)0.0064 (8)0.0005 (8)
C80.0528 (11)0.0451 (11)0.0455 (10)0.0109 (9)0.0076 (9)0.0002 (8)
C90.0759 (15)0.0747 (15)0.0537 (13)0.0151 (12)0.0054 (11)0.0255 (11)
C100.103 (2)0.0704 (16)0.0693 (15)0.0232 (14)0.0110 (14)0.0295 (13)
C110.0440 (10)0.0400 (9)0.0451 (10)0.0080 (8)0.0133 (8)0.0037 (8)
C120.0578 (12)0.0464 (11)0.0538 (12)0.0167 (9)0.0089 (9)0.0021 (9)
C130.0585 (13)0.0740 (15)0.0546 (12)0.0248 (11)0.0043 (10)0.0063 (11)
C140.0476 (12)0.0792 (16)0.0636 (14)0.0096 (11)0.0062 (10)0.0228 (12)
C150.0527 (12)0.0503 (12)0.0711 (14)0.0013 (9)0.0198 (11)0.0152 (10)
C160.0443 (10)0.0391 (10)0.0541 (11)0.0071 (8)0.0174 (9)0.0060 (8)
C170.0478 (10)0.0353 (9)0.0517 (11)0.0106 (8)0.0213 (9)0.0054 (8)
C180.0609 (13)0.0556 (12)0.0571 (12)0.0196 (10)0.0153 (10)0.0115 (10)
O50.1034 (15)0.0657 (12)0.1168 (16)0.0254 (10)0.0128 (12)0.0075 (11)
O60.0697 (11)0.1044 (14)0.0695 (11)0.0060 (10)0.0141 (9)0.0099 (10)
O70.0714 (10)0.0590 (9)0.0667 (10)0.0101 (8)0.0210 (8)0.0078 (7)
O80.0604 (9)0.0589 (9)0.0490 (8)0.0115 (7)0.0058 (6)0.0084 (6)
N60.0516 (11)0.0700 (13)0.0706 (13)0.0063 (9)0.0063 (9)0.0125 (10)
N70.0593 (10)0.0367 (8)0.0506 (9)0.0082 (7)0.0080 (8)0.0000 (7)
N80.0550 (9)0.0439 (9)0.0438 (9)0.0130 (7)0.0013 (7)0.0032 (7)
N90.0535 (9)0.0387 (8)0.0454 (9)0.0110 (7)0.0008 (7)0.0062 (7)
N100.0554 (10)0.0417 (9)0.0668 (11)0.0118 (8)0.0070 (8)0.0069 (8)
C190.0433 (10)0.0530 (11)0.0510 (11)0.0007 (9)0.0054 (9)0.0089 (9)
C200.0653 (13)0.0416 (11)0.0602 (13)0.0019 (10)0.0108 (11)0.0016 (9)
C210.0626 (13)0.0472 (11)0.0490 (11)0.0103 (9)0.0011 (9)0.0029 (9)
C220.0460 (10)0.0383 (9)0.0447 (10)0.0080 (8)0.0037 (8)0.0034 (8)
C230.0557 (12)0.0406 (10)0.0583 (12)0.0108 (9)0.0057 (9)0.0011 (9)
C240.0501 (11)0.0577 (12)0.0520 (11)0.0130 (9)0.0040 (9)0.0022 (9)
C250.0539 (11)0.0405 (10)0.0447 (10)0.0119 (9)0.0011 (9)0.0045 (8)
C260.0592 (12)0.0468 (11)0.0448 (11)0.0154 (9)0.0009 (9)0.0065 (9)
C270.0709 (14)0.0708 (14)0.0454 (11)0.0218 (12)0.0005 (10)0.0091 (10)
C280.0934 (19)0.0759 (17)0.0727 (16)0.0212 (14)0.0039 (14)0.0217 (13)
C290.0490 (11)0.0492 (11)0.0506 (11)0.0150 (9)0.0033 (9)0.0013 (9)
C300.0691 (14)0.0624 (13)0.0635 (13)0.0243 (11)0.0095 (11)0.0038 (11)
C310.0830 (18)0.096 (2)0.0718 (16)0.0378 (16)0.0268 (14)0.0076 (14)
C320.0745 (17)0.101 (2)0.091 (2)0.0273 (16)0.0336 (15)0.0261 (17)
C330.0617 (14)0.0619 (14)0.0919 (18)0.0097 (11)0.0118 (13)0.0203 (13)
C340.0482 (11)0.0489 (11)0.0655 (13)0.0144 (9)0.0007 (10)0.0026 (10)
C350.0497 (11)0.0435 (11)0.0515 (11)0.0152 (9)0.0084 (9)0.0085 (8)
C360.0787 (15)0.0666 (14)0.0546 (13)0.0289 (12)0.0007 (11)0.0142 (10)
Geometric parameters (Å, °) top
O1—N11.217 (2)O5—N61.226 (2)
O2—N11.218 (2)O6—N61.220 (2)
O3—C81.207 (2)O7—C261.200 (2)
O4—C81.328 (2)O8—C261.331 (2)
O4—C91.452 (2)O8—C271.455 (2)
N1—C11.466 (2)N6—C191.471 (3)
N2—N31.337 (2)N7—N81.342 (2)
N2—C41.395 (2)N7—C221.392 (2)
N2—HN20.8600N7—HN70.8600
N3—C71.285 (2)N8—C251.288 (2)
N4—C171.386 (2)N9—C351.383 (2)
N4—C111.401 (2)N9—C291.403 (2)
N4—C71.423 (2)N9—C251.422 (2)
N5—C171.309 (2)N10—C351.309 (3)
N5—C161.397 (2)N10—C341.397 (3)
C1—C61.380 (3)C19—C201.378 (3)
C1—C21.381 (3)C19—C241.382 (3)
C2—C31.378 (3)C20—C211.377 (3)
C2—H20.9300C20—H200.9300
C3—C41.391 (2)C21—C221.390 (3)
C3—H30.9300C21—H210.9300
C4—C51.390 (3)C22—C231.397 (3)
C5—C61.374 (3)C23—C241.378 (3)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—H240.9300
C7—C81.487 (3)C25—C261.490 (3)
C9—C101.498 (3)C27—C281.485 (3)
C9—H9A0.9700C27—H27A0.9700
C9—H9B0.9700C27—H27B0.9700
C10—H10A0.9600C28—H28A0.9600
C10—H10B0.9600C28—H28B0.9600
C10—H10C0.9600C28—H28C0.9600
C11—C121.385 (3)C29—C301.387 (3)
C11—C161.393 (2)C29—C341.396 (3)
C12—C131.388 (3)C30—C311.380 (3)
C12—H120.9300C30—H300.9300
C13—C141.384 (3)C31—C321.382 (4)
C13—H130.9300C31—H310.9300
C14—C151.379 (3)C32—C331.375 (4)
C14—H140.9300C32—H320.9300
C15—C161.392 (3)C33—C341.394 (3)
C15—H150.9300C33—H330.9300
C17—C181.485 (3)C35—C361.477 (3)
C18—H18A0.9600C36—H36A0.9600
C18—H18B0.9600C36—H36B0.9600
C18—H18C0.9600C36—H36C0.9600
C8—O4—C9116.83 (16)C26—O8—C27115.74 (16)
O1—N1—O2122.68 (18)O6—N6—O5123.4 (2)
O1—N1—C1118.63 (17)O6—N6—C19118.66 (19)
O2—N1—C1118.68 (17)O5—N6—C19117.9 (2)
N3—N2—C4118.31 (14)N8—N7—C22118.60 (15)
N3—N2—HN2120.8N8—N7—HN7120.7
C4—N2—HN2120.8C22—N7—HN7120.7
C7—N3—N2119.99 (15)C25—N8—N7119.93 (16)
C17—N4—C11106.86 (14)C35—N9—C29106.74 (15)
C17—N4—C7129.14 (15)C35—N9—C25127.53 (16)
C11—N4—C7123.94 (15)C29—N9—C25125.29 (15)
C17—N5—C16105.97 (14)C35—N10—C34106.03 (16)
C6—C1—C2121.48 (17)C20—C19—C24121.67 (18)
C6—C1—N1119.75 (17)C20—C19—N6118.98 (19)
C2—C1—N1118.76 (16)C24—C19—N6119.29 (19)
C3—C2—C1119.47 (17)C21—C20—C19119.52 (18)
C3—C2—H2120.3C21—C20—H20120.2
C1—C2—H2120.3C19—C20—H20120.2
C2—C3—C4119.62 (17)C20—C21—C22120.00 (19)
C2—C3—H3120.2C20—C21—H21120.0
C4—C3—H3120.2C22—C21—H21120.0
C5—C4—C3120.12 (17)C21—C22—N7121.86 (17)
C5—C4—N2118.87 (16)C21—C22—C23119.56 (17)
C3—C4—N2120.99 (16)N7—C22—C23118.55 (16)
C6—C5—C4120.21 (17)C24—C23—C22120.53 (18)
C6—C5—H5119.9C24—C23—H23119.7
C4—C5—H5119.9C22—C23—H23119.7
C5—C6—C1119.08 (18)C23—C24—C19118.72 (18)
C5—C6—H6120.5C23—C24—H24120.6
C1—C6—H6120.5C19—C24—H24120.6
N3—C7—N4123.59 (16)N8—C25—N9124.46 (17)
N3—C7—C8118.85 (16)N8—C25—C26119.50 (17)
N4—C7—C8117.48 (15)N9—C25—C26115.93 (16)
O3—C8—O4125.28 (18)O7—C26—O8125.24 (18)
O3—C8—C7123.09 (17)O7—C26—C25121.83 (19)
O4—C8—C7111.63 (16)O8—C26—C25112.93 (17)
O4—C9—C10106.55 (19)O8—C27—C28107.56 (18)
O4—C9—H9A110.4O8—C27—H27A110.2
C10—C9—H9A110.4C28—C27—H27A110.2
O4—C9—H9B110.4O8—C27—H27B110.2
C10—C9—H9B110.4C28—C27—H27B110.2
H9A—C9—H9B108.6H27A—C27—H27B108.5
C9—C10—H10A109.5C27—C28—H28A109.5
C9—C10—H10B109.5C27—C28—H28B109.5
H10A—C10—H10B109.5H28A—C28—H28B109.5
C9—C10—H10C109.5C27—C28—H28C109.5
H10A—C10—H10C109.5H28A—C28—H28C109.5
H10B—C10—H10C109.5H28B—C28—H28C109.5
C12—C11—C16122.47 (17)C30—C29—C34122.8 (2)
C12—C11—N4132.62 (16)C30—C29—N9132.18 (18)
C16—C11—N4104.91 (16)C34—C29—N9104.98 (17)
C11—C12—C13116.67 (19)C31—C30—C29116.2 (2)
C11—C12—H12121.7C31—C30—H30121.9
C13—C12—H12121.7C29—C30—H30121.9
C14—C13—C12121.7 (2)C30—C31—C32122.1 (2)
C14—C13—H13119.2C30—C31—H31119.0
C12—C13—H13119.2C32—C31—H31119.0
C15—C14—C13121.2 (2)C33—C32—C31121.4 (2)
C15—C14—H14119.4C33—C32—H32119.3
C13—C14—H14119.4C31—C32—H32119.3
C14—C15—C16118.37 (19)C32—C33—C34118.3 (2)
C14—C15—H15120.8C32—C33—H33120.9
C16—C15—H15120.8C34—C33—H33120.9
C15—C16—C11119.65 (19)C33—C34—C29119.3 (2)
C15—C16—N5130.16 (18)C33—C34—N10130.8 (2)
C11—C16—N5110.17 (16)C29—C34—N10109.93 (18)
N5—C17—N4112.06 (17)N10—C35—N9112.28 (18)
N5—C17—C18125.37 (16)N10—C35—C36125.24 (18)
N4—C17—C18122.57 (16)N9—C35—C36122.47 (18)
C17—C18—H18A109.5C35—C36—H36A109.5
C17—C18—H18B109.5C35—C36—H36B109.5
H18A—C18—H18B109.5H36A—C36—H36B109.5
C17—C18—H18C109.5C35—C36—H36C109.5
H18A—C18—H18C109.5H36A—C36—H36C109.5
H18B—C18—H18C109.5H36B—C36—H36C109.5
C4—N2—N3—C7179.34 (16)C22—N7—N8—C25176.61 (17)
O1—N1—C1—C6172.27 (19)O6—N6—C19—C20173.9 (2)
O2—N1—C1—C66.6 (3)O5—N6—C19—C206.2 (3)
O1—N1—C1—C28.6 (3)O6—N6—C19—C243.6 (3)
O2—N1—C1—C2172.50 (19)O5—N6—C19—C24176.4 (2)
C6—C1—C2—C30.6 (3)C24—C19—C20—C210.0 (3)
N1—C1—C2—C3179.68 (17)N6—C19—C20—C21177.33 (19)
C1—C2—C3—C40.5 (3)C19—C20—C21—C220.2 (3)
C2—C3—C4—C51.0 (3)C20—C21—C22—N7177.85 (19)
C2—C3—C4—N2179.60 (17)C20—C21—C22—C230.1 (3)
N3—N2—C4—C5173.32 (16)N8—N7—C22—C213.0 (3)
N3—N2—C4—C38.1 (3)N8—N7—C22—C23178.99 (17)
C3—C4—C5—C60.3 (3)C21—C22—C23—C240.6 (3)
N2—C4—C5—C6178.94 (18)N7—C22—C23—C24177.45 (19)
C4—C5—C6—C10.8 (3)C22—C23—C24—C190.7 (3)
C2—C1—C6—C51.3 (3)C20—C19—C24—C230.4 (3)
N1—C1—C6—C5179.64 (18)N6—C19—C24—C23177.78 (19)
N2—N3—C7—N46.2 (3)N7—N8—C25—N94.8 (3)
N2—N3—C7—C8177.09 (15)N7—N8—C25—C26179.04 (17)
C17—N4—C7—N3116.7 (2)C35—N9—C25—N8118.9 (2)
C11—N4—C7—N366.5 (2)C29—N9—C25—N869.7 (3)
C17—N4—C7—C866.6 (2)C35—N9—C25—C2664.9 (2)
C11—N4—C7—C8110.17 (19)C29—N9—C25—C26106.5 (2)
C9—O4—C8—O31.4 (3)C27—O8—C26—O71.3 (3)
C9—O4—C8—C7179.17 (16)C27—O8—C26—C25178.91 (16)
N3—C7—C8—O3179.47 (19)N8—C25—C26—O7171.24 (19)
N4—C7—C8—O32.6 (3)N9—C25—C26—O75.2 (3)
N3—C7—C8—O40.0 (2)N8—C25—C26—O88.5 (3)
N4—C7—C8—O4176.83 (15)N9—C25—C26—O8175.03 (15)
C8—O4—C9—C10173.35 (18)C26—O8—C27—C28172.01 (18)
C17—N4—C11—C12179.24 (19)C35—N9—C29—C30178.4 (2)
C7—N4—C11—C121.9 (3)C25—N9—C29—C305.6 (3)
C17—N4—C11—C160.09 (18)C35—N9—C29—C340.89 (19)
C7—N4—C11—C16177.45 (15)C25—N9—C29—C34173.76 (17)
C16—C11—C12—C131.2 (3)C34—C29—C30—C310.5 (3)
N4—C11—C12—C13178.02 (18)N9—C29—C30—C31179.8 (2)
C11—C12—C13—C140.2 (3)C29—C30—C31—C321.3 (4)
C12—C13—C14—C150.8 (3)C30—C31—C32—C330.8 (4)
C13—C14—C15—C160.0 (3)C31—C32—C33—C340.5 (4)
C14—C15—C16—C111.4 (3)C32—C33—C34—C291.2 (3)
C14—C15—C16—N5179.41 (18)C32—C33—C34—N10179.9 (2)
C12—C11—C16—C152.0 (3)C30—C29—C34—C330.7 (3)
N4—C11—C16—C15177.39 (16)N9—C29—C34—C33178.74 (18)
C12—C11—C16—N5179.57 (16)C30—C29—C34—N10179.64 (18)
N4—C11—C16—N51.01 (19)N9—C29—C34—N100.2 (2)
C17—N5—C16—C15176.41 (19)C35—N10—C34—C33177.5 (2)
C17—N5—C16—C111.77 (19)C35—N10—C34—C291.3 (2)
C16—N5—C17—N41.85 (19)C34—N10—C35—N91.9 (2)
C16—N5—C17—C18177.58 (17)C34—N10—C35—C36176.71 (18)
C11—N4—C17—N51.26 (19)C29—N9—C35—N101.8 (2)
C7—N4—C17—N5178.44 (16)C25—N9—C35—N10174.49 (17)
C11—N4—C17—C18178.19 (16)C29—N9—C35—C36176.86 (17)
C7—N4—C17—C181.0 (3)C25—N9—C35—C364.2 (3)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N5i0.862.192.954 (2)148
N7—HN7···N10ii0.862.192.967 (2)150
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N5i0.862.192.954 (2)148
N7—HN7···N10ii0.862.192.967 (2)150
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z.
Acknowledgements top

No acknowledgements

references
References top

Baouid, A., Benharref, A., Hasnaoui, A. & Lavergne, J.-P. (1994). Bull. Soc. Chim. Belg. 103, 743–751.

Baouid, A., Hasnaoui, A. & Lavergne, J.-P. (1996). Bull. Soc. Chim. Belg. 105, 339–344.

Bartsch, H. & Erker, T. (1988). J. Heterocycl. Chem. 25, 1151–1154.

Bellantuono, C., Reggi, G., Grattini, S. & Tognoni, G. (1980). Drugs, 19, 195–219.

Chiaroni, A., Riche, C., Baouid, A., Hasnaoui, A., Benharref, A. & Lavergne, J.-P. (1995). Acta Cryst. C51, 1352–1355.

El Hazazi, S., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e457–e458.

Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, les Pays-Bas.

Fair, C. K. (1990). MolEN. Enraf–Nonius, Delft, les Pays-Bas.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Jalal, R., El Messaoudi, M., Hasnaoui, A., Essaffar, M., Selkti, M., Lavergne, J.-P. & Compain, P. (2002). New J. Chem. 26, 1545–1548.

Rossi, A., Hunger, A., Kebrle, J. & Hoffmann, K. (1960). Helv. Chim. Acta, 63, 1298-1313.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.