organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1768-o1769

Di­ethyl 4-[5-(bi­phenyl-4-yl)-1H-pyrazol-4-yl]-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate ethanol monosolvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India, and cSeQuent Scientific Ltd, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 June 2011; accepted 16 June 2011; online 22 June 2011)

In the title compound, C28H29N3O4·C2H6O, the benzene ring makes dihedral angles of 33.72 (13) and 32.86 (13)°, respectively, with the adjacent pyrazole and phenyl rings. In the crystal, the components are connected via inter­molecular N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to the bc plane.

Related literature

For applications of Hantzsch 1,4-dihydro­pyridines, see: Surendra Kumar et al. (2011[Surendra Kumar, R., Idhayadhulla, A., Jamal Abdul Nasser, A. & Selvin, J. (2011). J. Serb. Chem. Soc. 76, 1-11.]); Swarnalatha et al. (2011[Swarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75-89.]); Tasaka et al. (2001[Tasaka, S., Ohmori, H., Gomi, N., Iino, M., Machida, T., Kiue, A., Naito, S. & Kuwano, M. (2001). Bioorg. Med. Chem. Lett. 11, 275-277.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C28H29N3O4·C2H6O

  • Mr = 517.61

  • Orthorhombic, P n a 21

  • a = 34.884 (2) Å

  • b = 10.2322 (7) Å

  • c = 7.8449 (6) Å

  • V = 2800.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.74 × 0.23 × 0.23 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.981

  • 19567 measured reflections

  • 4972 independent reflections

  • 4032 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.04

  • 4972 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O5 0.83 2.09 2.880 (3) 158
N3—H1N3⋯N2i 0.92 2.10 2.958 (2) 155
O5—H1O5⋯O1ii 0.91 1.88 2.776 (3) 172
C11—H11A⋯O2 0.93 2.50 3.414 (2) 167
C25—H25A⋯O3 0.96 2.13 2.864 (4) 132
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hantzsch 1,4-dihydropyridines (1,4-DHPs) and their derivatives are an important class of bioactive molecules in the pharmaceutical field. They possess anti-inflammatory, anti-microbial (Surendra Kumar et al., 2011), anti-oxidant and antiulcer activities (Swarnalatha et al., 2011). DHPs are commercially used as calcium channel blockers for the treatment of cardiovascular diseases, including hypertension. Recently, the syntheses of DHPs with respect to Multidrug Resistance (MDR) reversal in tumor cell gave a new dimension to their applications (Tasaka et al., 2001). Keeping in view of the biological importance of 1,4-dihydropyridines, we hereby report the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The rings A (N3/C16–C20), B (N1/N2/C13–C15), C (C7–C12) and D (C1–C6) are essentially planar. The dihedral angle between the best planes of these rings are A/B = 89.23 (11)°, A/C = 59.92 (11)°, A/D = 33.06 (12)°, B/C = 33.72 (13)°, B/D = 66.58 (13)° and C/D = 32.86 (13)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the molecules are connected via intermolecular N1—H1N1···O5, N3—H1N3···N2, O5—H1O5···O1, C11—H11A···O2 and C25—H25A···O3 (Table 1) hydrogen bonds, forming sheets lying parallel to the bc-plane.

Related literature top

For applications of Hantzsch 1,4-dihydropyridines, see: Surendra Kumar et al. (2011); Swarnalatha et al. (2011); Tasaka et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

3-(4-Biphenyl)-1H-pyrazole-4-carbaldehyde (0.2g, 0.80 mmol), ethylacetoacetate (0.21g, 1.6 mmol) and ammonium acetate (0.07g, 0.90 mmol) in ethanol (20 ml) were refluxed for 8 hours in an oil bath. After the completion of the reaction, the reaction mixture was concentrated and then poured onto crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from hot ethanol (0.28 g, 74%). M.p. 465–467 K.

Refinement top

All hydrogen atoms were positioned geometrically (N—H = 0.92 or 0.83 Å, O—H = 0.906 Å and C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(parent atom). A rotating group model was used for the methyl group. In the absence of significant anomalous scattering effects, 3710 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound.
Diethyl 4-[5-(biphenyl-4-yl)-1H-pyrazol-4-yl]-2,6-dimethyl- 1,4-dihydropyridine-3,5-dicarboxylate ethanol monosolvate top
Crystal data top
C28H29N3O4·C2H6OF(000) = 1104
Mr = 517.61Dx = 1.228 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4868 reflections
a = 34.884 (2) Åθ = 2.7–30.4°
b = 10.2322 (7) ŵ = 0.08 mm1
c = 7.8449 (6) ÅT = 296 K
V = 2800.1 (3) Å3Block, colourless
Z = 40.74 × 0.23 × 0.23 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4972 independent reflections
Radiation source: fine-focus sealed tube4032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 31.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 5148
Tmin = 0.941, Tmax = 0.981k = 1515
19567 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2544P]
where P = (Fo2 + 2Fc2)/3
4972 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C28H29N3O4·C2H6OV = 2800.1 (3) Å3
Mr = 517.61Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 34.884 (2) ŵ = 0.08 mm1
b = 10.2322 (7) ÅT = 296 K
c = 7.8449 (6) Å0.74 × 0.23 × 0.23 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4032 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.981Rint = 0.031
19567 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
4972 reflectionsΔρmin = 0.20 e Å3
343 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15693 (5)0.88345 (16)0.3346 (3)0.0591 (5)
O20.11537 (4)0.72014 (13)0.3073 (2)0.0436 (3)
O30.13653 (8)0.4760 (3)0.3954 (3)0.0946 (9)
O40.10858 (5)0.43817 (19)0.1476 (3)0.0645 (5)
N10.18843 (4)0.30435 (15)0.2742 (3)0.0389 (4)
H1N10.18340.23940.33370.047*
N20.22190 (4)0.36422 (16)0.2390 (3)0.0441 (4)
N30.20862 (5)0.73950 (16)0.1187 (3)0.0408 (4)
H1N30.22520.78400.18920.049*
C10.00634 (6)0.0493 (2)0.2277 (4)0.0495 (6)
H1A0.01120.00490.15990.059*
C20.04339 (7)0.0011 (2)0.2442 (5)0.0619 (7)
H2A0.05050.07430.18610.074*
C30.06951 (7)0.0647 (3)0.3461 (5)0.0664 (8)
H3A0.09430.03220.35740.080*
C40.05887 (7)0.1764 (3)0.4314 (4)0.0617 (7)
H4A0.07640.21940.50080.074*
C50.02180 (6)0.2254 (2)0.4138 (3)0.0475 (5)
H5A0.01480.30110.47180.057*
C60.00488 (5)0.16286 (17)0.3112 (3)0.0367 (4)
C70.11209 (5)0.18553 (17)0.2385 (4)0.0423 (5)
H7A0.13260.12870.22190.051*
C80.07570 (5)0.13530 (16)0.2610 (4)0.0439 (5)
H8A0.07210.04530.25820.053*
C90.04412 (5)0.21663 (17)0.2879 (3)0.0342 (4)
C100.05099 (5)0.35085 (17)0.2899 (3)0.0382 (4)
H10A0.03050.40770.30710.046*
C110.08745 (5)0.40188 (15)0.2671 (3)0.0361 (4)
H11A0.09100.49190.26980.043*
C120.11871 (4)0.32017 (15)0.2402 (3)0.0302 (3)
C130.15760 (5)0.37296 (16)0.2171 (3)0.0299 (3)
C140.21198 (5)0.47197 (18)0.1555 (3)0.0383 (4)
H14A0.22950.53230.11290.046*
C150.17206 (5)0.48438 (15)0.1388 (2)0.0286 (3)
C160.18842 (5)0.65135 (18)0.2170 (3)0.0356 (4)
C170.15876 (5)0.58515 (17)0.1458 (3)0.0314 (3)
C180.15176 (4)0.59474 (15)0.0457 (2)0.0272 (3)
H18A0.12420.58700.06660.033*
C190.16513 (5)0.72775 (15)0.1099 (3)0.0307 (3)
C200.19517 (5)0.78817 (17)0.0321 (3)0.0366 (4)
C210.14687 (5)0.78599 (15)0.2587 (3)0.0342 (4)
C220.09488 (8)0.7696 (2)0.4542 (4)0.0549 (6)
H22A0.09460.86440.45280.066*
H22B0.10720.74090.55850.066*
C230.05559 (10)0.7187 (4)0.4459 (6)0.0987 (15)
H23A0.04130.74980.54210.148*
H23B0.05620.62490.44740.148*
H23C0.04360.74810.34260.148*
C240.21576 (7)0.9085 (2)0.0939 (4)0.0575 (7)
H24A0.23580.93060.01510.086*
H24B0.22670.89170.20410.086*
H24C0.19790.97970.10180.086*
C250.20259 (7)0.6421 (3)0.3981 (3)0.0527 (6)
H25A0.18750.57930.45930.079*
H25B0.22900.61530.39820.079*
H25C0.20030.72600.45210.079*
C260.13454 (6)0.4967 (2)0.2460 (3)0.0429 (5)
C270.08260 (8)0.3459 (3)0.2227 (5)0.0736 (9)
H27A0.08540.26190.16680.088*
H27B0.08880.33470.34240.088*
C280.04346 (9)0.3905 (4)0.2063 (7)0.1010 (14)
H28A0.02650.32770.25710.151*
H28B0.04060.47300.26310.151*
H28C0.03720.40040.08780.151*
O50.19324 (6)0.08630 (16)0.5054 (3)0.0593 (5)
H1O50.18320.02020.44290.089*
C290.17458 (13)0.0994 (4)0.6678 (6)0.0951 (12)
H29A0.17530.01670.72810.114*
H29B0.14790.12340.65120.114*
C300.19408 (15)0.2004 (4)0.7688 (7)0.1167 (16)
H30A0.18150.20950.87690.175*
H30B0.19320.28210.70880.175*
H30C0.22030.17550.78650.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0662 (10)0.0450 (8)0.0661 (12)0.0165 (7)0.0147 (10)0.0243 (9)
O20.0459 (7)0.0403 (6)0.0446 (9)0.0068 (5)0.0161 (7)0.0116 (7)
O30.1151 (19)0.129 (2)0.0396 (10)0.0564 (16)0.0000 (12)0.0216 (13)
O40.0597 (10)0.0770 (11)0.0569 (11)0.0369 (9)0.0027 (9)0.0219 (10)
N10.0317 (7)0.0343 (7)0.0507 (10)0.0001 (5)0.0060 (8)0.0109 (8)
N20.0274 (7)0.0448 (8)0.0601 (12)0.0007 (6)0.0083 (8)0.0113 (9)
N30.0319 (7)0.0415 (8)0.0490 (11)0.0074 (6)0.0100 (8)0.0044 (8)
C10.0445 (10)0.0399 (9)0.0641 (16)0.0092 (8)0.0029 (11)0.0032 (11)
C20.0519 (12)0.0499 (11)0.084 (2)0.0227 (9)0.0094 (15)0.0067 (14)
C30.0393 (11)0.0753 (16)0.085 (2)0.0209 (11)0.0035 (14)0.0224 (17)
C40.0380 (11)0.0818 (17)0.0655 (17)0.0045 (11)0.0085 (12)0.0111 (16)
C50.0389 (10)0.0542 (11)0.0493 (13)0.0060 (8)0.0020 (10)0.0023 (11)
C60.0322 (8)0.0355 (8)0.0423 (11)0.0057 (6)0.0024 (8)0.0095 (8)
C70.0317 (8)0.0285 (7)0.0668 (15)0.0015 (6)0.0008 (10)0.0024 (9)
C80.0358 (8)0.0268 (7)0.0690 (15)0.0035 (6)0.0028 (10)0.0056 (9)
C90.0321 (8)0.0335 (7)0.0370 (10)0.0059 (6)0.0027 (8)0.0036 (8)
C100.0304 (7)0.0314 (7)0.0529 (12)0.0013 (6)0.0050 (9)0.0024 (9)
C110.0340 (8)0.0264 (6)0.0480 (11)0.0030 (6)0.0051 (9)0.0016 (8)
C120.0278 (7)0.0289 (6)0.0339 (9)0.0031 (5)0.0005 (7)0.0035 (7)
C130.0279 (7)0.0288 (7)0.0331 (9)0.0004 (5)0.0035 (7)0.0009 (7)
C140.0276 (8)0.0397 (8)0.0475 (12)0.0036 (6)0.0046 (8)0.0064 (9)
C150.0265 (7)0.0282 (6)0.0311 (8)0.0012 (6)0.0022 (7)0.0006 (7)
C160.0339 (8)0.0380 (8)0.0349 (9)0.0051 (6)0.0042 (8)0.0043 (8)
C170.0291 (7)0.0333 (7)0.0319 (9)0.0025 (6)0.0027 (7)0.0006 (7)
C180.0236 (6)0.0278 (6)0.0301 (8)0.0000 (5)0.0002 (6)0.0002 (7)
C190.0286 (7)0.0276 (6)0.0360 (9)0.0016 (6)0.0006 (7)0.0008 (7)
C200.0312 (8)0.0313 (7)0.0472 (12)0.0044 (6)0.0008 (8)0.0004 (8)
C210.0381 (8)0.0281 (7)0.0363 (10)0.0002 (6)0.0004 (8)0.0017 (8)
C220.0671 (15)0.0489 (11)0.0486 (13)0.0036 (10)0.0219 (13)0.0101 (11)
C230.077 (2)0.105 (2)0.114 (3)0.0266 (18)0.060 (2)0.054 (3)
C240.0530 (12)0.0465 (11)0.0730 (18)0.0226 (9)0.0106 (13)0.0085 (12)
C250.0559 (13)0.0648 (13)0.0374 (11)0.0067 (11)0.0145 (11)0.0054 (11)
C260.0450 (10)0.0459 (10)0.0378 (11)0.0010 (8)0.0067 (9)0.0050 (9)
C270.0620 (15)0.0731 (16)0.086 (2)0.0284 (13)0.0082 (17)0.0258 (18)
C280.0580 (17)0.131 (3)0.114 (4)0.0168 (18)0.015 (2)0.036 (3)
O50.0741 (11)0.0425 (8)0.0612 (12)0.0067 (7)0.0091 (10)0.0011 (8)
C290.108 (3)0.088 (2)0.089 (3)0.013 (2)0.011 (3)0.008 (2)
C300.164 (4)0.098 (3)0.088 (3)0.031 (3)0.012 (3)0.023 (3)
Geometric parameters (Å, º) top
O1—C211.213 (2)C14—H14A0.9300
O2—C211.344 (2)C15—C181.520 (2)
O2—C221.448 (3)C16—C171.357 (3)
O3—C261.193 (3)C16—C251.507 (3)
O4—C261.332 (3)C17—C261.466 (3)
O4—C271.435 (3)C17—C181.525 (3)
N1—N21.347 (2)C18—C191.524 (2)
N1—C131.360 (2)C18—H18A0.9800
N1—H1N10.8303C19—C201.361 (2)
N2—C141.328 (3)C19—C211.457 (3)
N3—C201.367 (3)C20—C241.505 (3)
N3—C161.380 (3)C22—C231.468 (4)
N3—H1N30.9208C22—H22A0.9700
C1—C21.389 (3)C22—H22B0.9700
C1—C61.390 (3)C23—H23A0.9600
C1—H1A0.9300C23—H23B0.9600
C2—C31.376 (5)C23—H23C0.9600
C2—H2A0.9300C24—H24A0.9600
C3—C41.376 (4)C24—H24B0.9600
C3—H3A0.9300C24—H24C0.9600
C4—C51.394 (3)C25—H25A0.9600
C4—H4A0.9300C25—H25B0.9600
C5—C61.387 (3)C25—H25C0.9600
C5—H5A0.9300C27—C281.446 (5)
C6—C91.487 (2)C27—H27A0.9700
C7—C81.381 (2)C27—H27B0.9700
C7—C121.397 (2)C28—H28A0.9600
C7—H7A0.9300C28—H28B0.9600
C8—C91.397 (3)C28—H28C0.9600
C8—H8A0.9300O5—C291.437 (5)
C9—C101.394 (2)O5—H1O50.9060
C10—C111.387 (2)C29—C301.469 (6)
C10—H10A0.9300C29—H29A0.9700
C11—C121.390 (2)C29—H29B0.9700
C11—H11A0.9300C30—H30A0.9600
C12—C131.471 (2)C30—H30B0.9600
C13—C151.390 (2)C30—H30C0.9600
C14—C151.405 (2)
C21—O2—C22117.03 (17)C19—C18—H18A108.5
C26—O4—C27119.2 (2)C17—C18—H18A108.5
N2—N1—C13112.53 (15)C20—C19—C21120.64 (16)
N2—N1—H1N1131.3C20—C19—C18119.56 (17)
C13—N1—H1N1115.6C21—C19—C18119.73 (15)
C14—N2—N1104.64 (14)C19—C20—N3119.11 (17)
C20—N3—C16123.13 (16)C19—C20—C24126.5 (2)
C20—N3—H1N3123.7N3—C20—C24114.38 (19)
C16—N3—H1N3108.0O1—C21—O2120.59 (19)
C2—C1—C6121.0 (2)O1—C21—C19127.07 (18)
C2—C1—H1A119.5O2—C21—C19112.33 (15)
C6—C1—H1A119.5O2—C22—C23107.5 (2)
C3—C2—C1120.1 (2)O2—C22—H22A110.2
C3—C2—H2A119.9C23—C22—H22A110.2
C1—C2—H2A119.9O2—C22—H22B110.2
C4—C3—C2119.8 (2)C23—C22—H22B110.2
C4—C3—H3A120.1H22A—C22—H22B108.5
C2—C3—H3A120.1C22—C23—H23A109.5
C3—C4—C5120.1 (3)C22—C23—H23B109.5
C3—C4—H4A120.0H23A—C23—H23B109.5
C5—C4—H4A120.0C22—C23—H23C109.5
C6—C5—C4120.9 (2)H23A—C23—H23C109.5
C6—C5—H5A119.5H23B—C23—H23C109.5
C4—C5—H5A119.5C20—C24—H24A109.5
C5—C6—C1118.04 (18)C20—C24—H24B109.5
C5—C6—C9121.22 (18)H24A—C24—H24B109.5
C1—C6—C9120.73 (19)C20—C24—H24C109.5
C8—C7—C12121.19 (16)H24A—C24—H24C109.5
C8—C7—H7A119.4H24B—C24—H24C109.5
C12—C7—H7A119.4C16—C25—H25A109.5
C7—C8—C9121.51 (15)C16—C25—H25B109.5
C7—C8—H8A119.2H25A—C25—H25B109.5
C9—C8—H8A119.2C16—C25—H25C109.5
C10—C9—C8116.95 (15)H25A—C25—H25C109.5
C10—C9—C6121.42 (16)H25B—C25—H25C109.5
C8—C9—C6121.62 (16)O3—C26—O4121.9 (2)
C11—C10—C9121.81 (16)O3—C26—C17127.1 (2)
C11—C10—H10A119.1O4—C26—C17111.0 (2)
C9—C10—H10A119.1O4—C27—C28110.6 (3)
C10—C11—C12120.84 (15)O4—C27—H27A109.5
C10—C11—H11A119.6C28—C27—H27A109.5
C12—C11—H11A119.6O4—C27—H27B109.5
C11—C12—C7117.70 (15)C28—C27—H27B109.5
C11—C12—C13121.41 (14)H27A—C27—H27B108.1
C7—C12—C13120.89 (15)C27—C28—H28A109.5
N1—C13—C15106.37 (15)C27—C28—H28B109.5
N1—C13—C12119.93 (15)H28A—C28—H28B109.5
C15—C13—C12133.66 (15)C27—C28—H28C109.5
N2—C14—C15112.28 (16)H28A—C28—H28C109.5
N2—C14—H14A123.9H28B—C28—H28C109.5
C15—C14—H14A123.9C29—O5—H1O5112.0
C13—C15—C14104.16 (15)O5—C29—C30109.5 (4)
C13—C15—C18130.75 (14)O5—C29—H29A109.8
C14—C15—C18125.01 (15)C30—C29—H29A109.8
C17—C16—N3119.08 (19)O5—C29—H29B109.8
C17—C16—C25127.3 (2)C30—C29—H29B109.8
N3—C16—C25113.57 (19)H29A—C29—H29B108.2
C16—C17—C26121.8 (2)C29—C30—H30A109.5
C16—C17—C18119.68 (17)C29—C30—H30B109.5
C26—C17—C18118.38 (17)H30A—C30—H30B109.5
C15—C18—C19111.22 (14)C29—C30—H30C109.5
C15—C18—C17110.55 (14)H30A—C30—H30C109.5
C19—C18—C17109.50 (15)H30B—C30—H30C109.5
C15—C18—H18A108.5
C13—N1—N2—C141.0 (3)C20—N3—C16—C25162.70 (19)
C6—C1—C2—C31.0 (4)N3—C16—C17—C26175.86 (17)
C1—C2—C3—C40.2 (5)C25—C16—C17—C263.3 (3)
C2—C3—C4—C50.3 (5)N3—C16—C17—C188.4 (3)
C3—C4—C5—C60.1 (4)C25—C16—C17—C18172.41 (19)
C4—C5—C6—C10.6 (4)C13—C15—C18—C19130.8 (2)
C4—C5—C6—C9178.2 (2)C14—C15—C18—C1952.8 (2)
C2—C1—C6—C51.1 (4)C13—C15—C18—C17107.3 (2)
C2—C1—C6—C9177.7 (2)C14—C15—C18—C1769.0 (2)
C12—C7—C8—C90.6 (4)C16—C17—C18—C1592.78 (19)
C7—C8—C9—C100.4 (4)C26—C17—C18—C1583.07 (19)
C7—C8—C9—C6179.6 (2)C16—C17—C18—C1930.1 (2)
C5—C6—C9—C1032.4 (3)C26—C17—C18—C19154.05 (15)
C1—C6—C9—C10146.4 (2)C15—C18—C19—C2091.1 (2)
C5—C6—C9—C8148.4 (2)C17—C18—C19—C2031.4 (2)
C1—C6—C9—C832.8 (3)C15—C18—C19—C2185.96 (19)
C8—C9—C10—C110.2 (4)C17—C18—C19—C21151.56 (16)
C6—C9—C10—C11179.5 (2)C21—C19—C20—N3172.09 (17)
C9—C10—C11—C120.3 (4)C18—C19—C20—N310.9 (3)
C10—C11—C12—C70.5 (3)C21—C19—C20—C246.8 (3)
C10—C11—C12—C13179.5 (2)C18—C19—C20—C24170.2 (2)
C8—C7—C12—C110.6 (4)C16—N3—C20—C1915.3 (3)
C8—C7—C12—C13179.7 (2)C16—N3—C20—C24163.8 (2)
N2—N1—C13—C150.4 (2)C22—O2—C21—O11.0 (3)
N2—N1—C13—C12178.27 (19)C22—O2—C21—C19179.95 (19)
C11—C12—C13—N1147.1 (2)C20—C19—C21—O15.4 (3)
C7—C12—C13—N131.9 (3)C18—C19—C21—O1171.6 (2)
C11—C12—C13—C1535.7 (3)C20—C19—C21—O2173.48 (18)
C7—C12—C13—C15145.3 (2)C18—C19—C21—O29.5 (2)
N1—N2—C14—C151.2 (3)C21—O2—C22—C23158.7 (3)
N1—C13—C15—C140.4 (2)C27—O4—C26—O31.0 (4)
C12—C13—C15—C14177.1 (2)C27—O4—C26—C17178.9 (2)
N1—C13—C15—C18177.32 (19)C16—C17—C26—O32.9 (4)
C12—C13—C15—C180.2 (4)C18—C17—C26—O3178.7 (3)
N2—C14—C15—C131.0 (2)C16—C17—C26—O4176.97 (18)
N2—C14—C15—C18178.21 (19)C18—C17—C26—O41.2 (3)
C20—N3—C16—C1716.6 (3)C26—O4—C27—C28117.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O50.832.092.880 (3)158
N3—H1N3···N2i0.922.102.958 (2)155
O5—H1O5···O1ii0.911.882.776 (3)172
C11—H11A···O20.932.503.414 (2)167
C25—H25A···O30.962.132.864 (4)132
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H29N3O4·C2H6O
Mr517.61
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)34.884 (2), 10.2322 (7), 7.8449 (6)
V3)2800.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.74 × 0.23 × 0.23
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.941, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
19567, 4972, 4032
Rint0.031
(sin θ/λ)max1)0.736
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.04
No. of reflections4972
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O50.832.092.880 (3)158
N3—H1N3···N2i0.922.102.958 (2)155
O5—H1O5···O1ii0.911.882.776 (3)172
C11—H11A···O20.932.503.414 (2)167
C25—H25A···O30.962.132.864 (4)132
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§On secondment to: SeQuent Scientific Ltd, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Board for Research in Nuclear Sciences, Government of India, for a Young Scientist award. AMV is thankful to the management, SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurendra Kumar, R., Idhayadhulla, A., Jamal Abdul Nasser, A. & Selvin, J. (2011). J. Serb. Chem. Soc. 76, 1–11.  Google Scholar
First citationSwarnalatha, G., Prasanthi, G., Sirisha, N. & Madhusudhana Chetty, C. (2011). Int. J. ChemTech Res. 3, 75–89.  CAS Google Scholar
First citationTasaka, S., Ohmori, H., Gomi, N., Iino, M., Machida, T., Kiue, A., Naito, S. & Kuwano, M. (2001). Bioorg. Med. Chem. Lett. 11, 275–277.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1768-o1769
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds