organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(4-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene)hydrazinecarboxamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 June 2011; accepted 20 June 2011; online 25 June 2011)

The asymmetric unit of the title compound, C9H11N3O3, consists of two crystallographically independent mol­ecules. Both mol­ecules are almost planar, with r.m.s. deviations of 0.107 and 0.099 Å. In the crystal, the two independent mol­ecules form a dimer with an R22(8) ring motif via N—H⋯O hydrogen bonds. The dimers are further linked into a three-dimensional network by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For applications of semicarbazone derivatives, see: Warren et al. (1977[Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520-1521.]); Chandra & Gupta (2005[Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089-1094.]); Jain et al. (2002[Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101-110.]); Pilgram (1978[Pilgram, K. H. G. (1978). US Patent No. 4 108 399.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609-613.]). For the synthesis, see: Vogel et al. (1978[Vogel, A. I., Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed. p. 1112. New York: Longman.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O3

  • Mr = 209.21

  • Orthorhombic, P c a 21

  • a = 13.8568 (3) Å

  • b = 5.0379 (1) Å

  • c = 26.8582 (5) Å

  • V = 1874.95 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.56 × 0.21 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.992

  • 27088 measured reflections

  • 3785 independent reflections

  • 3477 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 3785 reflections

  • 305 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2OA⋯O2Bi 0.86 (3) 2.22 (3) 2.9924 (18) 149 (3)
N2A—H2NA⋯O3B 0.88 (3) 2.03 (3) 2.8966 (19) 171 (3)
N3A—H3NB⋯O3Bii 0.89 (3) 2.10 (3) 2.961 (2) 165 (2)
N2B—H2NB⋯O3A 0.90 (3) 2.00 (3) 2.8812 (18) 169 (2)
N3B—H3ND⋯O3Aiii 0.86 (3) 2.09 (3) 2.9415 (19) 172 (3)
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+2, z]; (iii) [x-{\script{1\over 2}}, -y+1, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, semicarbazone is a derivative of an aldehyde or ketone formed by condensation between a ketone or aldehyde and a semicarbazide. Semicarbazones find a large number of applications in the field of synthetic chemistry, such as in medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002), and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were found to possess anti-convulsant activity (Yogeeswari et al., 2004). Prompted by the diverse activities of semicarbazones, we have synthesized the title compound to study its crystal structure.

The asymmetric unit of title compound consists of two crystallographically independent molecules, A and B (Fig. 1). Both molecules are almost planar with the maximum deviation of 0.3177 (16) Å at N3A for molecule A whereas 0.1729 (12) Å at O3B for molecule B. The two independent molecules are interconnected by N2A—H2NA···O3B and N2B—H2NB···O3A hydrogen bonds (Fig. 1, Table 1) generating an R22(8) ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are further linked into a three-dimensional network (Fig. 2) by O2A—H2OA···O2B, N3A—H3NB···O3B and N3B—H3ND···O3A hydrogen bonds (Table 1).

Related literature top

For applications of semicarbazone derivatives, see: Warren et al. (1977); Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Yogeeswari et al. (2004). For the synthesis, see: Vogel et al. (1978). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Semicarbazide hydrochloride (0.86 g, 7.70 mmol) and freshly re-crystallized sodium acetate (0.77 g, 9.40 mmol) were dissolved in water (10 ml) following a literature procedure (Vogel et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, vanillin (1.1 g, 7.23 mmol) was added and the mixture was shaken well. A little alcohol was added to dissolve the turbidity. The mixture was shaken for a further 10 minutes and allowed to stand. The title compound crystallizes on standing for 6 h. The separated crystals were filtered, washed with cold water and re-crystallized from ethanol. Yield: 1.34 g, 88.74%. M.p.: 502–504 K (Vogel et al., 1978).

Refinement top

N-bound and O-bound hydrogen atoms were located in a difference Fourier map and refined freely. The rest of the H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). As there are not enough anomalous dispersion to determine the absolute configuration, 2799 Friedel pairs were merged before final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms. Hydrogen bonds (dashed lines) are shown.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the b axis, showing molecules linked into a three-dimensional network. Hydrogen bonds (dashed lines) are shown.
(E)-2-(4-Hydroxy-3-methoxybenzylidene)hydrazinecarboxamide top
Crystal data top
C9H11N3O3F(000) = 880
Mr = 209.21Dx = 1.482 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 8792 reflections
a = 13.8568 (3) Åθ = 3.0–33.7°
b = 5.0379 (1) ŵ = 0.11 mm1
c = 26.8582 (5) ÅT = 100 K
V = 1874.95 (7) Å3Plate, colourless
Z = 80.56 × 0.21 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3785 independent reflections
Radiation source: fine-focus sealed tube3477 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 33.8°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2121
Tmin = 0.939, Tmax = 0.992k = 77
27088 measured reflectionsl = 4234
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.2848P]
where P = (Fo2 + 2Fc2)/3
3785 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C9H11N3O3V = 1874.95 (7) Å3
Mr = 209.21Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 13.8568 (3) ŵ = 0.11 mm1
b = 5.0379 (1) ÅT = 100 K
c = 26.8582 (5) Å0.56 × 0.21 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3785 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3477 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.992Rint = 0.034
27088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
3785 reflectionsΔρmin = 0.20 e Å3
305 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.36344 (8)1.9545 (3)0.42045 (5)0.0210 (2)
O2A0.17592 (9)1.9564 (2)0.43391 (5)0.0184 (2)
H2OA0.220 (2)2.071 (6)0.4406 (12)0.039 (8)*
O3A0.56955 (8)0.7961 (2)0.21626 (5)0.0197 (2)
N1A0.42454 (10)1.2040 (3)0.29115 (5)0.0167 (2)
N2A0.45328 (10)0.9953 (3)0.26135 (6)0.0176 (3)
H2NA0.411 (2)0.885 (6)0.2484 (11)0.034 (7)*
N3A0.60407 (11)1.1886 (3)0.25456 (6)0.0203 (3)
H3NA0.581 (2)1.323 (6)0.2682 (12)0.041 (8)*
H3NB0.6599 (18)1.207 (5)0.2389 (10)0.025 (6)*
C1A0.35450 (11)1.5891 (3)0.36049 (6)0.0156 (3)
H1A0.42201.58970.35440.019*
C2A0.31448 (10)1.7697 (3)0.39336 (6)0.0144 (3)
C3A0.21404 (11)1.7756 (3)0.40168 (6)0.0148 (3)
C4A0.15552 (11)1.5929 (3)0.37808 (6)0.0173 (3)
H4A0.08791.59410.38390.021*
C5A0.19573 (11)1.4062 (3)0.34560 (6)0.0170 (3)
H5A0.15531.27930.32980.020*
C6A0.29452 (11)1.4047 (3)0.33624 (6)0.0152 (3)
C7A0.33449 (12)1.2052 (3)0.30250 (6)0.0165 (3)
H7A0.29311.07400.28870.020*
C8A0.54501 (11)0.9882 (3)0.24256 (6)0.0156 (3)
C9A0.46611 (11)1.9590 (4)0.41561 (7)0.0213 (3)
H9AA0.49302.09370.43800.032*
H9AB0.48342.00200.38120.032*
H9AC0.49231.78450.42440.032*
O1B0.53465 (8)0.4555 (2)0.01033 (5)0.0185 (2)
O2B0.72055 (9)0.3736 (3)0.00747 (5)0.0207 (2)
H1OB0.6814 (19)0.481 (5)0.0197 (11)0.031 (7)*
O3B0.29971 (9)0.6842 (2)0.21721 (5)0.0191 (2)
N1B0.44745 (10)0.2792 (3)0.14260 (5)0.0161 (2)
N2B0.41711 (10)0.4832 (3)0.17293 (5)0.0177 (3)
H2NB0.4597 (19)0.600 (5)0.1853 (10)0.029 (6)*
N3B0.26476 (11)0.2964 (3)0.17689 (6)0.0203 (3)
H3ND0.2088 (18)0.283 (5)0.1902 (10)0.026 (6)*
H3NC0.288 (2)0.162 (6)0.1622 (11)0.038 (8)*
C1B0.53046 (11)0.0990 (3)0.07266 (6)0.0154 (3)
H1B0.46400.12450.07990.019*
C2B0.57608 (10)0.2581 (3)0.03781 (6)0.0144 (3)
C3B0.67512 (11)0.2216 (3)0.02783 (6)0.0156 (3)
C4B0.72711 (11)0.0285 (3)0.05253 (6)0.0174 (3)
H4B0.79400.00620.04590.021*
C5B0.68118 (11)0.1338 (3)0.08729 (6)0.0169 (3)
H5B0.71680.26730.10420.020*
C6B0.58328 (11)0.1011 (3)0.09736 (6)0.0148 (3)
C7B0.53818 (11)0.2863 (3)0.13190 (6)0.0157 (3)
H7B0.57730.41800.14720.019*
C8B0.32466 (11)0.4926 (3)0.19051 (6)0.0152 (3)
C9B0.43242 (11)0.4943 (3)0.01562 (7)0.0192 (3)
H9BA0.41230.64710.00440.029*
H9BB0.39830.33510.00420.029*
H9BC0.41700.52720.05070.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0126 (5)0.0269 (6)0.0234 (6)0.0001 (4)0.0005 (4)0.0095 (5)
O2A0.0139 (5)0.0211 (5)0.0201 (6)0.0010 (4)0.0028 (4)0.0038 (4)
O3A0.0163 (5)0.0177 (5)0.0250 (6)0.0002 (4)0.0041 (4)0.0053 (5)
N1A0.0182 (6)0.0160 (5)0.0160 (6)0.0016 (4)0.0019 (5)0.0029 (4)
N2A0.0147 (6)0.0173 (6)0.0209 (6)0.0013 (4)0.0041 (5)0.0056 (5)
N3A0.0161 (6)0.0185 (6)0.0261 (7)0.0022 (5)0.0036 (5)0.0058 (5)
C1A0.0130 (6)0.0177 (6)0.0161 (6)0.0014 (5)0.0011 (5)0.0006 (5)
C2A0.0117 (6)0.0178 (6)0.0137 (6)0.0003 (5)0.0007 (5)0.0001 (5)
C3A0.0133 (6)0.0167 (6)0.0144 (6)0.0022 (5)0.0013 (5)0.0010 (5)
C4A0.0122 (6)0.0198 (6)0.0199 (7)0.0001 (5)0.0015 (5)0.0000 (5)
C5A0.0141 (6)0.0180 (6)0.0188 (7)0.0004 (5)0.0001 (5)0.0012 (5)
C6A0.0148 (6)0.0161 (6)0.0146 (6)0.0008 (5)0.0005 (5)0.0000 (5)
C7A0.0167 (6)0.0172 (6)0.0154 (6)0.0011 (5)0.0001 (5)0.0012 (5)
C8A0.0150 (6)0.0161 (6)0.0155 (6)0.0014 (5)0.0000 (5)0.0009 (5)
C9A0.0135 (6)0.0280 (7)0.0223 (7)0.0024 (5)0.0004 (6)0.0044 (6)
O1B0.0143 (5)0.0201 (5)0.0212 (6)0.0006 (4)0.0002 (4)0.0053 (4)
O2B0.0160 (5)0.0247 (5)0.0213 (6)0.0017 (4)0.0021 (4)0.0074 (5)
O3B0.0166 (5)0.0170 (5)0.0236 (6)0.0011 (4)0.0038 (4)0.0046 (4)
N1B0.0168 (6)0.0162 (5)0.0154 (6)0.0010 (4)0.0024 (5)0.0027 (4)
N2B0.0144 (6)0.0181 (5)0.0206 (6)0.0011 (4)0.0038 (5)0.0059 (5)
N3B0.0166 (6)0.0186 (6)0.0258 (7)0.0018 (5)0.0032 (5)0.0055 (5)
C1B0.0135 (6)0.0177 (6)0.0151 (6)0.0006 (5)0.0007 (5)0.0005 (5)
C2B0.0126 (6)0.0156 (6)0.0151 (6)0.0007 (5)0.0001 (5)0.0004 (5)
C3B0.0149 (6)0.0174 (6)0.0145 (6)0.0028 (5)0.0017 (5)0.0013 (5)
C4B0.0135 (6)0.0206 (6)0.0181 (7)0.0013 (5)0.0012 (5)0.0010 (5)
C5B0.0151 (6)0.0190 (6)0.0167 (7)0.0002 (5)0.0002 (5)0.0005 (5)
C6B0.0154 (6)0.0160 (6)0.0131 (6)0.0016 (5)0.0009 (5)0.0002 (5)
C7B0.0164 (6)0.0166 (6)0.0140 (6)0.0000 (5)0.0005 (5)0.0008 (5)
C8B0.0151 (6)0.0153 (6)0.0152 (6)0.0011 (5)0.0014 (5)0.0000 (5)
C9B0.0139 (6)0.0232 (7)0.0206 (7)0.0019 (5)0.0013 (5)0.0009 (5)
Geometric parameters (Å, º) top
O1A—C2A1.3626 (19)O1B—C2B1.3651 (18)
O1A—C9A1.429 (2)O1B—C9B1.4370 (19)
O2A—C3A1.3630 (19)O2B—C3B1.3717 (19)
O2A—H2OA0.86 (3)O2B—H1OB0.83 (3)
O3A—C8A1.2458 (19)O3B—C8B1.2511 (18)
N1A—C7A1.285 (2)N1B—C7B1.290 (2)
N1A—N2A1.3801 (19)N1B—N2B1.3772 (18)
N2A—C8A1.368 (2)N2B—C8B1.3661 (19)
N2A—H2NA0.88 (3)N2B—H2NB0.90 (3)
N3A—C8A1.339 (2)N3B—C8B1.341 (2)
N3A—H3NA0.83 (3)N3B—H3ND0.86 (3)
N3A—H3NB0.89 (3)N3B—H3NC0.85 (3)
C1A—C2A1.384 (2)C1B—C2B1.385 (2)
C1A—C6A1.406 (2)C1B—C6B1.411 (2)
C1A—H1A0.9500C1B—H1B0.9500
C2A—C3A1.410 (2)C2B—C3B1.410 (2)
C3A—C4A1.381 (2)C3B—C4B1.380 (2)
C4A—C5A1.399 (2)C4B—C5B1.395 (2)
C4A—H4A0.9500C4B—H4B0.9500
C5A—C6A1.392 (2)C5B—C6B1.393 (2)
C5A—H5A0.9500C5B—H5B0.9500
C6A—C7A1.462 (2)C6B—C7B1.457 (2)
C7A—H7A0.9500C7B—H7B0.9500
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C2A—O1A—C9A117.26 (12)C2B—O1B—C9B117.40 (12)
C3A—O2A—H2OA108 (2)C3B—O2B—H1OB109.6 (19)
C7A—N1A—N2A114.92 (13)C7B—N1B—N2B114.11 (13)
C8A—N2A—N1A120.12 (13)C8B—N2B—N1B121.10 (13)
C8A—N2A—H2NA117.1 (19)C8B—N2B—H2NB117.9 (17)
N1A—N2A—H2NA121.3 (18)N1B—N2B—H2NB120.4 (17)
C8A—N3A—H3NA119 (2)C8B—N3B—H3ND120.2 (17)
C8A—N3A—H3NB119.9 (17)C8B—N3B—H3NC118.5 (19)
H3NA—N3A—H3NB117 (3)H3ND—N3B—H3NC119 (2)
C2A—C1A—C6A119.54 (14)C2B—C1B—C6B119.62 (13)
C2A—C1A—H1A120.2C2B—C1B—H1B120.2
C6A—C1A—H1A120.2C6B—C1B—H1B120.2
O1A—C2A—C1A126.19 (13)O1B—C2B—C1B126.52 (13)
O1A—C2A—C3A113.11 (13)O1B—C2B—C3B113.67 (13)
C1A—C2A—C3A120.70 (14)C1B—C2B—C3B119.82 (13)
O2A—C3A—C4A120.61 (14)O2B—C3B—C4B119.08 (13)
O2A—C3A—C2A119.82 (14)O2B—C3B—C2B120.34 (13)
C4A—C3A—C2A119.54 (14)C4B—C3B—C2B120.56 (14)
C3A—C4A—C5A120.05 (14)C3B—C4B—C5B119.78 (14)
C3A—C4A—H4A120.0C3B—C4B—H4B120.1
C5A—C4A—H4A120.0C5B—C4B—H4B120.1
C6A—C5A—C4A120.52 (14)C6B—C5B—C4B120.33 (14)
C6A—C5A—H5A119.7C6B—C5B—H5B119.8
C4A—C5A—H5A119.7C4B—C5B—H5B119.8
C5A—C6A—C1A119.62 (14)C5B—C6B—C1B119.88 (14)
C5A—C6A—C7A119.20 (14)C5B—C6B—C7B117.75 (14)
C1A—C6A—C7A121.15 (14)C1B—C6B—C7B122.30 (14)
N1A—C7A—C6A121.20 (14)N1B—C7B—C6B122.82 (14)
N1A—C7A—H7A119.4N1B—C7B—H7B118.6
C6A—C7A—H7A119.4C6B—C7B—H7B118.6
O3A—C8A—N3A123.75 (15)O3B—C8B—N3B123.62 (15)
O3A—C8A—N2A118.88 (14)O3B—C8B—N2B118.94 (14)
N3A—C8A—N2A117.36 (14)N3B—C8B—N2B117.42 (14)
O1A—C9A—H9AA109.5O1B—C9B—H9BA109.5
O1A—C9A—H9AB109.5O1B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
O1A—C9A—H9AC109.5O1B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C7A—N1A—N2A—C8A173.09 (15)C7B—N1B—N2B—C8B175.20 (15)
C9A—O1A—C2A—C1A1.7 (2)C9B—O1B—C2B—C1B3.9 (2)
C9A—O1A—C2A—C3A178.26 (14)C9B—O1B—C2B—C3B175.85 (14)
C6A—C1A—C2A—O1A178.16 (15)C6B—C1B—C2B—O1B178.73 (14)
C6A—C1A—C2A—C3A1.8 (2)C6B—C1B—C2B—C3B1.0 (2)
O1A—C2A—C3A—O2A0.6 (2)O1B—C2B—C3B—O2B1.3 (2)
C1A—C2A—C3A—O2A179.49 (14)C1B—C2B—C3B—O2B178.42 (14)
O1A—C2A—C3A—C4A177.67 (14)O1B—C2B—C3B—C4B179.73 (14)
C1A—C2A—C3A—C4A2.3 (2)C1B—C2B—C3B—C4B0.0 (2)
O2A—C3A—C4A—C5A179.16 (15)O2B—C3B—C4B—C5B177.80 (14)
C2A—C3A—C4A—C5A0.9 (2)C2B—C3B—C4B—C5B0.6 (2)
C3A—C4A—C5A—C6A0.9 (2)C3B—C4B—C5B—C6B0.3 (2)
C4A—C5A—C6A—C1A1.3 (2)C4B—C5B—C6B—C1B0.7 (2)
C4A—C5A—C6A—C7A179.36 (15)C4B—C5B—C6B—C7B176.57 (14)
C2A—C1A—C6A—C5A0.0 (2)C2B—C1B—C6B—C5B1.3 (2)
C2A—C1A—C6A—C7A177.99 (15)C2B—C1B—C6B—C7B175.81 (14)
N2A—N1A—C7A—C6A176.29 (14)N2B—N1B—C7B—C6B175.18 (14)
C5A—C6A—C7A—N1A176.93 (15)C5B—C6B—C7B—N1B177.73 (15)
C1A—C6A—C7A—N1A5.1 (2)C1B—C6B—C7B—N1B0.6 (2)
N1A—N2A—C8A—O3A179.13 (15)N1B—N2B—C8B—O3B178.70 (15)
N1A—N2A—C8A—N3A0.4 (2)N1B—N2B—C8B—N3B0.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2OA···O2Bi0.86 (3)2.22 (3)2.9924 (18)149 (3)
N2A—H2NA···O3B0.88 (3)2.03 (3)2.8966 (19)171 (3)
N3A—H3NB···O3Bii0.89 (3)2.10 (3)2.961 (2)165 (2)
N2B—H2NB···O3A0.90 (3)2.00 (3)2.8812 (18)169 (2)
N3B—H3ND···O3Aiii0.86 (3)2.09 (3)2.9415 (19)172 (3)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1/2, y+2, z; (iii) x1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O3
Mr209.21
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)13.8568 (3), 5.0379 (1), 26.8582 (5)
V3)1874.95 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.56 × 0.21 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.939, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
27088, 3785, 3477
Rint0.034
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections3785
No. of parameters305
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2OA···O2Bi0.86 (3)2.22 (3)2.9924 (18)149 (3)
N2A—H2NA···O3B0.88 (3)2.03 (3)2.8966 (19)171 (3)
N3A—H3NB···O3Bii0.89 (3)2.10 (3)2.961 (2)165 (2)
N2B—H2NB···O3A0.90 (3)2.00 (3)2.8812 (18)169 (2)
N3B—H3ND···O3Aiii0.86 (3)2.09 (3)2.9415 (19)172 (3)
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1/2, y+2, z; (iii) x1/2, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160. AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for a Young Scientist award. AMI also thanks the Defence Research and Development Organization, New Delhi, India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094.  CrossRef Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110.  Web of Science CrossRef CAS Google Scholar
First citationPilgram, K. H. G. (1978). US Patent No. 4 108 399.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVogel, A. I., Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed. p. 1112. New York: Longman.  Google Scholar
First citationWarren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds