organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl-1-(p-tol­yl)-1H-benzo[f]chromene benzene hemisolvate

aBiochemical and Environmental Engineering College, Nanjing Xiaozhuang University, Nanjing 210017, People's Republic of China
*Correspondence e-mail: xmw1102@sina.com

(Received 29 December 2010; accepted 11 January 2011; online 18 June 2011)

The title compound, C26H20O·0.5C6H6, was obtained from condensation reaction of 2-naphthol, 4-methyl­benzaldehyde and phenyl­methanamine. The naphthyl ring system is orented at dihedral angles of 84.11 (1) and 19.33 (8)° with respect to the mean planes of the two benzene rings.

Related literature

For applications of Betti-type reactions, see: Wang et al. (2005[Wang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. A70, 1897-1900.]). The reaction of substituted phenols and aldehydes under controlled conditions has been used to build up a compound with two chiral centers, see: Gardiner & Raston (1997[Gardiner, M. & Raston, C. (1997). Coord. Chem. Rev. 166, 1-34.]); Gutsche & Nam (1998[Gutsche, C. D. & Nam, K. C. (1998). J. Am. Chem. Soc. 110, 6153-6162.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20O·0.5C6H6

  • Mr = 387.47

  • Monoclinic, P 21 /c

  • a = 12.653 (3) Å

  • b = 5.9049 (12) Å

  • c = 29.974 (8) Å

  • β = 109.08 (3)°

  • V = 2116.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 1.000

  • 14405 measured reflections

  • 3623 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.148

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.144

  • S = 0.93

  • 3623 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of substituted phenols and aldehydes under controlled conditions has been used to build up supramolecular compounds, the most important ones being calixarenes (Gardiner & Raston et al. 1997, Gutsche & Nam et al. 1998). 2-Naphthol reacts with aromatic aldehydes to produce 14-aryl-14H-dibenzo[a,j]xanthenes, which could be used as anti-inflamatory agents. Here we report the synthesis and crystal structure of the title compound. The asymmetric unit of the compound contains a benzene solvent molecule (Fig. 1). The bond lengths and angles are within normal ranges (Allen et al. 1987).

Rings of the two benzenes and naphthol are, of course, planar. The dihedral angles between rings A (C1–C10) and B (C12–C17), and between rings A and C (C21–C26), are 84.11 (1) and 19.33 (8), respectively. The orientation of ring B with respect to the mean planes of the two groups containing rings A and C, may be described by the dihedral angles of 84.11 (1) and 76.82 (2), respectively. The molecules are stabilized by intramolecular C—H···O hydrogen bonding (Table 1). Intermolecular attractions are only on the order of Van der Waals forces.

Related literature top

For applications of Betti-type reactions, see: Wang et al. (2005). For the reaction of substituted phenols and aldehydes under controlled conditions to form calixerenes, see: Gardiner & Raston (1997); Gutsche & Nam (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Methylbenzaldehyde (1.8 g, 0.015 mol) and phenylmethanamine (1.605 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-4:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in b enzeneat room temperature.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-Phenyl-1-(p-tolyl)-1H-benzo[f]chromene benzene hemisolvate top
Crystal data top
C26H20O·0.5C6H6F(000) = 820
Mr = 387.47Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3623 reflections
a = 12.653 (3) Åθ = 2.6–24.8°
b = 5.9049 (12) ŵ = 0.07 mm1
c = 29.974 (8) ÅT = 293 K
β = 109.08 (3)°Prism, colorless
V = 2116.5 (9) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3623 independent reflections
Radiation source: fine-focus sealed tube1438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.148
Detector resolution: 13.6612 pixels mm-1θmax = 24.8°, θmin = 3.2°
CCD_Profile_fitting scansh = 1413
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.813, Tmax = 1.000l = 3535
14405 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.010P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
3623 reflectionsΔρmax = 0.18 e Å3
273 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0054 (6)
Crystal data top
C26H20O·0.5C6H6V = 2116.5 (9) Å3
Mr = 387.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.653 (3) ŵ = 0.07 mm1
b = 5.9049 (12) ÅT = 293 K
c = 29.974 (8) Å0.20 × 0.20 × 0.20 mm
β = 109.08 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3623 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1438 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.148
14405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.93Δρmax = 0.18 e Å3
3623 reflectionsΔρmin = 0.20 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1992 (2)1.0645 (5)0.23039 (9)0.0549 (8)
C50.1441 (4)1.0682 (8)0.16184 (15)0.0502 (12)
C100.0792 (4)0.8897 (8)0.15186 (14)0.0464 (12)
C10.0391 (4)0.8852 (7)0.17364 (14)0.0433 (11)
C110.1128 (3)0.7117 (7)0.16231 (13)0.0464 (12)
H11A0.07620.56390.16010.056*
C120.1302 (3)0.7595 (8)0.11524 (14)0.0452 (11)
C20.0853 (4)1.0539 (8)0.20516 (14)0.0468 (12)
C90.1366 (4)0.7168 (8)0.12064 (15)0.0591 (13)
H9A0.09570.59970.11350.071*
C30.0233 (4)1.2317 (7)0.21550 (14)0.0497 (12)
H3A0.05891.34280.23720.060*
C60.2621 (4)1.0666 (9)0.13957 (16)0.0664 (15)
H6A0.30471.18370.14550.080*
C40.0887 (4)1.2401 (8)0.19354 (14)0.0557 (13)
H4A0.12961.36060.19940.067*
C80.2511 (5)0.7169 (9)0.10062 (16)0.0689 (15)
H8A0.28700.59810.08110.083*
C130.1067 (4)0.6008 (8)0.08004 (16)0.0673 (15)
H13A0.08200.45820.08540.081*
C170.1694 (4)0.9652 (8)0.10589 (16)0.0619 (14)
H17A0.18811.07520.12940.074*
C150.1555 (4)0.8569 (10)0.02733 (16)0.0649 (15)
C70.3138 (4)0.8968 (10)0.10966 (17)0.0737 (16)
H7A0.39100.90000.09520.088*
C140.1188 (4)0.6477 (10)0.03650 (17)0.0752 (16)
H14A0.10200.53650.01330.090*
C180.1597 (4)0.9155 (10)0.02193 (15)0.103 (2)
H18A0.18561.06820.02200.155*
H18B0.08620.90120.04460.155*
H18C0.20980.81370.03000.155*
C160.1819 (4)1.0139 (9)0.06301 (18)0.0712 (16)
H16A0.20861.15540.05820.085*
C270.5726 (5)1.0641 (15)0.4766 (2)0.097 (2)
H27A0.62171.10720.46090.117*
C280.5207 (6)0.8584 (14)0.4683 (2)0.096 (2)
H28A0.53470.76060.44660.115*
C290.4494 (5)0.7940 (10)0.4912 (3)0.0953 (19)
H29A0.41510.65280.48500.114*
C250.4963 (4)1.0693 (9)0.33788 (16)0.0753 (16)
H25A0.51361.19490.35770.090*
C260.3953 (4)1.0623 (9)0.30149 (15)0.0639 (14)
H26A0.34521.18190.29730.077*
C210.3688 (4)0.8798 (8)0.27155 (15)0.0491 (12)
C230.5458 (4)0.7128 (9)0.31572 (17)0.0740 (16)
H23A0.59620.59330.32040.089*
C240.5710 (4)0.8955 (10)0.34533 (16)0.0727 (16)
H24A0.63810.90110.37020.087*
C220.4449 (4)0.7045 (8)0.27852 (15)0.0615 (14)
H22A0.42880.58040.25830.074*
C200.2610 (4)0.8690 (8)0.23220 (14)0.0444 (11)
C190.2214 (4)0.7014 (8)0.20194 (14)0.0503 (12)
H19A0.26360.56960.20560.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.045 (2)0.052 (2)0.063 (2)0.0056 (18)0.0123 (16)0.0046 (16)
C50.052 (4)0.057 (4)0.044 (3)0.002 (3)0.019 (3)0.012 (2)
C100.054 (3)0.050 (3)0.037 (3)0.004 (3)0.017 (2)0.006 (2)
C10.051 (3)0.041 (3)0.041 (3)0.005 (2)0.020 (2)0.002 (2)
C110.054 (3)0.045 (3)0.042 (3)0.003 (2)0.019 (2)0.001 (2)
C120.045 (3)0.046 (3)0.045 (3)0.002 (2)0.015 (2)0.002 (2)
C20.051 (3)0.050 (3)0.044 (3)0.005 (3)0.023 (3)0.004 (2)
C90.051 (4)0.072 (4)0.053 (3)0.000 (3)0.016 (3)0.009 (3)
C30.058 (3)0.047 (3)0.045 (3)0.005 (3)0.017 (2)0.004 (2)
C60.053 (4)0.087 (4)0.058 (3)0.017 (3)0.016 (3)0.015 (3)
C40.064 (4)0.058 (4)0.048 (3)0.013 (3)0.023 (3)0.003 (3)
C80.069 (4)0.071 (4)0.061 (3)0.008 (3)0.013 (3)0.010 (3)
C130.087 (4)0.060 (4)0.063 (3)0.004 (3)0.036 (3)0.010 (3)
C170.081 (4)0.055 (4)0.054 (3)0.011 (3)0.028 (3)0.006 (3)
C150.059 (4)0.093 (5)0.047 (3)0.013 (3)0.024 (3)0.005 (3)
C70.057 (4)0.094 (5)0.065 (4)0.003 (4)0.013 (3)0.015 (3)
C140.081 (4)0.092 (5)0.053 (3)0.009 (3)0.022 (3)0.024 (3)
C180.101 (5)0.157 (6)0.061 (4)0.027 (4)0.040 (3)0.025 (4)
C160.088 (4)0.068 (4)0.069 (4)0.002 (3)0.041 (3)0.011 (3)
C270.082 (5)0.116 (6)0.093 (5)0.011 (5)0.027 (4)0.016 (4)
C280.080 (5)0.112 (7)0.093 (5)0.003 (4)0.026 (4)0.014 (4)
C290.082 (5)0.082 (5)0.111 (6)0.018 (4)0.017 (4)0.002 (4)
C250.075 (4)0.085 (5)0.059 (4)0.001 (4)0.012 (3)0.012 (3)
C260.060 (4)0.070 (4)0.053 (3)0.014 (3)0.007 (3)0.006 (3)
C210.049 (3)0.056 (3)0.047 (3)0.009 (3)0.023 (2)0.007 (3)
C230.059 (4)0.095 (5)0.063 (4)0.020 (3)0.012 (3)0.003 (3)
C240.054 (4)0.110 (5)0.047 (3)0.003 (4)0.007 (3)0.004 (3)
C220.054 (4)0.070 (4)0.058 (3)0.008 (3)0.015 (3)0.003 (3)
C200.039 (3)0.051 (3)0.048 (3)0.005 (3)0.019 (2)0.006 (2)
C190.058 (3)0.048 (3)0.042 (3)0.007 (3)0.013 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C201.386 (4)C15—C141.379 (6)
O1—C21.392 (5)C15—C181.534 (6)
C5—C41.410 (5)C7—H7A0.9300
C5—C61.422 (6)C14—H14A0.9300
C5—C101.427 (5)C18—H18A0.9600
C10—C91.415 (5)C18—H18B0.9600
C10—C11.424 (5)C18—H18C0.9600
C1—C21.366 (5)C16—H16A0.9300
C1—C111.498 (5)C27—C281.364 (7)
C11—C191.495 (5)C27—C29i1.374 (7)
C11—C121.523 (5)C27—H27A0.9300
C11—H11A0.9800C28—C291.353 (7)
C12—C131.369 (5)C28—H28A0.9300
C12—C171.375 (5)C29—C27i1.374 (7)
C2—C31.405 (5)C29—H29A0.9300
C9—C81.376 (6)C25—C241.363 (6)
C9—H9A0.9300C25—C261.383 (5)
C3—C41.355 (5)C25—H25A0.9300
C3—H3A0.9300C26—C211.372 (5)
C6—C71.361 (6)C26—H26A0.9300
C6—H6A0.9300C21—C221.383 (5)
C4—H4A0.9300C21—C201.484 (5)
C8—C71.404 (6)C23—C241.367 (6)
C8—H8A0.9300C23—C221.394 (5)
C13—C141.391 (6)C23—H23A0.9300
C13—H13A0.9300C24—H24A0.9300
C17—C161.376 (5)C22—H22A0.9300
C17—H17A0.9300C20—C191.325 (5)
C15—C161.372 (6)C19—H19A0.9300
C20—O1—C2117.0 (3)C6—C7—H7A119.9
C4—C5—C6122.4 (5)C8—C7—H7A119.9
C4—C5—C10118.6 (4)C15—C14—C13120.9 (5)
C6—C5—C10119.0 (5)C15—C14—H14A119.6
C9—C10—C1121.6 (4)C13—C14—H14A119.6
C9—C10—C5117.8 (4)C15—C18—H18A109.5
C1—C10—C5120.6 (4)C15—C18—H18B109.5
C2—C1—C10116.9 (4)H18A—C18—H18B109.5
C2—C1—C11119.8 (4)C15—C18—H18C109.5
C10—C1—C11123.3 (4)H18A—C18—H18C109.5
C19—C11—C1109.1 (3)H18B—C18—H18C109.5
C19—C11—C12111.7 (3)C15—C16—C17120.9 (5)
C1—C11—C12111.9 (3)C15—C16—H16A119.5
C19—C11—H11A108.0C17—C16—H16A119.5
C1—C11—H11A108.0C28—C27—C29i118.3 (6)
C12—C11—H11A108.0C28—C27—H27A120.8
C13—C12—C17116.7 (4)C29i—C27—H27A120.8
C13—C12—C11121.7 (4)C29—C28—C27121.3 (6)
C17—C12—C11121.6 (4)C29—C28—H28A119.4
C1—C2—O1122.8 (4)C27—C28—H28A119.4
C1—C2—C3123.6 (4)C28—C29—C27i120.4 (6)
O1—C2—C3113.6 (4)C28—C29—H29A119.8
C8—C9—C10121.9 (5)C27i—C29—H29A119.8
C8—C9—H9A119.1C24—C25—C26121.3 (5)
C10—C9—H9A119.1C24—C25—H25A119.4
C4—C3—C2119.4 (4)C26—C25—H25A119.4
C4—C3—H3A120.3C21—C26—C25120.3 (5)
C2—C3—H3A120.3C21—C26—H26A119.8
C7—C6—C5121.3 (5)C25—C26—H26A119.8
C7—C6—H6A119.4C26—C21—C22118.7 (4)
C5—C6—H6A119.4C26—C21—C20121.2 (4)
C3—C4—C5120.8 (4)C22—C21—C20120.1 (4)
C3—C4—H4A119.6C24—C23—C22120.3 (5)
C5—C4—H4A119.6C24—C23—H23A119.8
C9—C8—C7119.8 (5)C22—C23—H23A119.8
C9—C8—H8A120.1C25—C24—C23119.1 (5)
C7—C8—H8A120.1C25—C24—H24A120.5
C12—C13—C14121.6 (5)C23—C24—H24A120.5
C12—C13—H13A119.2C21—C22—C23120.3 (5)
C14—C13—H13A119.2C21—C22—H22A119.8
C12—C17—C16122.3 (4)C23—C22—H22A119.8
C12—C17—H17A118.8C19—C20—O1120.9 (4)
C16—C17—H17A118.8C19—C20—C21128.3 (4)
C16—C15—C14117.5 (4)O1—C20—C21110.8 (4)
C16—C15—C18121.5 (5)C20—C19—C11123.8 (4)
C14—C15—C18120.9 (5)C20—C19—H19A118.1
C6—C7—C8120.3 (5)C11—C19—H19A118.1
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26A···O10.932.342.692 (6)102

Experimental details

Crystal data
Chemical formulaC26H20O·0.5C6H6
Mr387.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.653 (3), 5.9049 (12), 29.974 (8)
β (°) 109.08 (3)
V3)2116.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.813, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14405, 3623, 1438
Rint0.148
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.144, 0.93
No. of reflections3623
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation (grant No. 04KJD150112) of the Jiangsu Provincial Education Department.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationGardiner, M. & Raston, C. (1997). Coord. Chem. Rev. 166, 1–34.  Web of Science CrossRef CAS Google Scholar
First citationGutsche, C. D. & Nam, K. C. (1998). J. Am. Chem. Soc. 110, 6153–6162.  CrossRef Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. Y., Dong, Y. M., Sun, J. W., Xu, X. N., Li, R. & Hu, Y. F. (2005). J. Org. Chem. A70, 1897–1900.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds