metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[µ-1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene]bis[aqua(pyridine-2,6dicarboxylato)copper(II)] monohydrate

Gui-Ying Dong,^a* Cui-Hong He,^a Liu Tong-Fei,^a Xiao-Chen Deng^b and Xiao-Ge Shi^b

^aCollege of Chemical Engineering, Hebei United University, Tangshan 063009, People's Republic of China, and ^bQian'an College, Hebei United University, Tangshan 063009, People's Republic of China Correspondence e-mail: tsdgying@126.com

Received 7 June 2011; accepted 13 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.047; wR factor = 0.161; data-to-parameter ratio = 12.3.

The title compound, $[Cu_2(C_7H_3NO_4)_2(C_{12}H_{12}N_6)(H_2O)_2]$ ·-H₂O, displays a discrete dinuclear structure, in which the central Cu^{II} atom is five-coordinated in a distorted squarebased pyramidal coordination geometry and the flexible ligand 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene adopts a bismonodentate bridging mode linking the Cu^{II} atoms. It is further assembled by O-H···O hydrogen-bond interactions involving both the coordinated and uncoordinated water molecules. The latter exhibits half-occupancy.

Related literature

For the versatile conformations of the flexible 1,4-bis(1,2,4-triazol-1-yl-methyl)benzene ligand and related complexes, see: Arion *et al.* (2003); Peng *et al.* (2004, 2006); Meng *et al.* (2004); Li *et al.* (2005); Lin & Dong (2007); Ding *et al.* (2009).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Cu}_2(\mathrm{C}_7\mathrm{H}_3\mathrm{NO}_4)_2(\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{N}_6)\text{-} & \beta = 93.541~(1)^\circ \\ & (\mathrm{H}_2\mathrm{O})_2]\text{\cdot}\mathrm{H}_2\mathrm{O} & V = 1521.0~(2)~\text{\AA}^3 \\ & M_r = 751.63 & Z = 2 \\ & \mathrm{Monoclinic}, P2_1/c & \mathrm{Mo}~K\alpha~\mathrm{radiation} \\ & a = 4.9017~(4)~\text{\AA} & \mu = 1.47~\mathrm{mm}^{-1} \\ & b = 10.3022~(9)~\text{\AA} & T = 298~\mathrm{K} \\ & c = 30.178~(3)~\text{\AA} & 0.20 \times 0.15 \times 0.11~\mathrm{mm} \end{split}$$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.881, T_{\rm max} = 0.901$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 217 parameters $wR(F^2) = 0.161$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 1.40$ e Å $^{-3}$ 2678 reflections $\Delta \rho_{min} = -0.40$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2W-H2WA\cdots O2W^{i}$ $O2W-H2WB\cdots O2W^{ii}$ $O1W-H1WA\cdots O4^{iii}$ $O1W-H1WB\cdots O3^{iv}$	0.85	2.15	2.920 (5)	151
	0.85	1.96	2.807 (5)	179
	0.83	1.93	2.746 (5)	168
	0.86	1.86	2.692 (5)	164

7340 measured reflections

 $R_{\rm int} = 0.029$

2678 independent reflections

2256 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) -x + 1, -y + 2, -z; (iii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) x + 1, y, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Hebei United University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2295).

References

- Arion, V. B., Reisner, E., Fremuth, M., Jakupec, M. A., Keppler, B. K., Kukushkin, V. Y. & Pombeiro, A. J. (2003). *Inorg. Chem.* 42, 6024–6031.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, B., Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2009). Cryst. Growth Des. 9, 593–601.
- Li, B. L., Peng, Y. F., Li, B. Z. & Zhang, Y. (2005). Chem. Commun. 18, 2333– 2335.
- Lin, J. & Dong, G.-Y. (2007). Acta Cryst. E63, m1944.
- Meng, X., Song, Y., Hou, H., Han, H., Xiao, B., Fan, Y. & Zhu, Y. (2004). Inorg. Chem. 43, 3528–3536.
- Peng, Y. F., Ge, H. Y., Li, B. L. & Zhang, Y. (2006). Cryst. Growth Des. 6, 994–998.
- Peng, Y. F., Li, B. Z., Zhou, J. H., Li, B. L. & Zhang, Y. (2004). Chin. J. Struct. Chem. 23, 985–988.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

supporting information

Acta Cryst. (2011). E67, m944 [doi:10.1107/S1600536811022756]

[*µ*-1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene]bis[aqua(pyridine-2,6-dicarboxyl-ato)copper(II)] monohydrate

Gui-Ying Dong, Cui-Hong He, Liu Tong-Fei, Xiao-Chen Deng and Xiao-Ge Shi

S1. Comment

1,4-bis(1,2,4-triazol-1-ylmethyl)benzene (btx=1,4-bis(1,2,4-triazol-1-ylmethyl)benzene) is a ditriazole-containing bridge ligand, in which the flexible nature of spacers allows the ligands to bend and rotate when coordinating to metal centers so as to conform the coordination geometries of metal ions.(Arion, *et al.*, 2003; Peng, *et al.*, 2004, 2006; Meng, *et al.*, 2004; Li *et al.*, 2005;Lin *et al.* 2007; Ding, *et al.* 2009) To further understand the coordination behavior of this ligand, we report herein the crystal structure of the title compound,(I).

The asymmetric unit of (I) contains one copper^{II}, one 2,6-pyridinedicarboxylato, one half btx ligand, one coordination water molecule and one half free water molecule. The copper center is five-coordinated in distorted square-based pyramidal coordination geometry. As show in Fig.1, selected geometric parameters see table 1.Each copper^{II} is coordinated by one tridentate dipicolinato ligands *via* their carboxylate and nitrogen donors.(Cu1—N1= 1.908 (3); Cu1—O1=2.007 (3); Cu(1)—O(3)= 2.048 (3) Å) another one (Cu1—N4=1.951 (3) Å) from btx ligand together with one water molecule (Cu1—O1W = 2.217 (4) Å). Two carboxylate oxygen atoms and two nitrogen atoms define a quadrangle equatorial plane, and the water oxygen atom occupies the apical position. Each btx ligand bridges two copper atoms related by a twofold axis into dinuclear structure. The dihedral angle between the imidazole and phenyl rings is 70.0 (4)° in same btx ligang. It is noteworthy that there exist strong hydrogen-bonding interaction(table 2) involving the carboxy group oxygen atoms of dipicolinato ligands as well as coordinated and free water molecules, this may further stabilize the crytal structure.

S2. Experimental

A mixture of $Cu(NO_3)_2$ 3H₂O(120.5 mg, 0.5 mmol), 2,6-Pyridinedicarboxylic acid (167 mg, 1 mmol),NaOH(80 mg, 2 mm mol), btx (60 mg, 0.5 mmol) and water (12 ml) was sealed in a 25 ml teflon-lined stainless steel reactor and heated to 413 K for 72 h. The reaction was cooled to room temperature over a period of 24 h. Blue prism crystals of 1 suitable for X-ray diffraction analysis were obtained with a yield of 37%(based btx)

S3. Refinement

H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ (parent atom). Water H atoms were located in Fourier difference maps and isotropically.

Figure 1

The part molecular structure of (I), showing displacement ellipsoids at the 30% probability level for atoms [symmetry code: (i) -x, -y + 3, -z)

[µ-1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene]bis[aqua(pyridine-2,6- dicarboxylato)copper(II)] monohydrate

Crystal data	
$[Cu_2(C_7H_3NO_4)_2(C_{12}H_{12}N_6)(H_2O)_2] \cdot H_2O$	F(000) = 764
$M_r = 751.63$	$D_{\rm x} = 1.641 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3568 reflections
a = 4.9017 (4) Å	$\theta = 22.3 - 3.6^{\circ}$
b = 10.3022 (9) Å	$\mu = 1.47 \text{ mm}^{-1}$
c = 30.178 (3) Å	T = 298 K
$\beta = 93.541 (1)^{\circ}$	Prism, blue
$V = 1521.0(2) \text{ Å}^3$	$0.20 \times 0.15 \times 0.11 \text{ mm}$
Z = 2	

Data collection

Bruker SMART CCD area-detector	7340 measured reflections
diffractometer	2678 independent reflections
Radiation source: fine-focus sealed tube	2256 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.029$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 5$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -12 \rightarrow 12$
$T_{\min} = 0.881, T_{\max} = 0.901$	$l = -35 \rightarrow 27$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.161$	neighbouring sites
S = 1.06	H-atom parameters constrained
2678 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1045P)^2 + 1.8845P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 1.40 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F* with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.08344 (10)	0.98034 (5)	0.149509 (16)	0.0318 (2)	
03	-0.1809 (6)	0.9403 (3)	0.19769 (10)	0.0376 (7)	
01	0.3528 (6)	0.9508 (3)	0.10311 (10)	0.0392 (7)	
N1	0.1905 (7)	0.8071 (3)	0.16460 (11)	0.0300 (8)	
C7	-0.1409 (9)	0.8318 (4)	0.21771 (14)	0.0328 (9)	
04	-0.2555 (7)	0.7960 (3)	0.25024 (11)	0.0469 (8)	
N4	-0.0779 (7)	1.1422 (3)	0.12697 (12)	0.0346 (8)	
C2	0.3801 (9)	0.7519 (4)	0.14164 (14)	0.0335 (9)	
C3	0.4592 (10)	0.6261 (4)	0.15103 (16)	0.0419 (11)	
Н3	0.5917	0.5859	0.1350	0.050*	
C6	0.0697 (8)	0.7462 (4)	0.19736 (13)	0.0309 (9)	
02	0.6818 (8)	0.8113 (4)	0.08671 (12)	0.0565 (10)	
C11	-0.1952 (9)	1.4310 (5)	0.02197 (15)	0.0415 (11)	
C1	0.4833 (9)	0.8436 (4)	0.10695 (14)	0.0358 (10)	
C5	0.1422 (10)	0.6216 (4)	0.20832 (16)	0.0417 (11)	
Н5	0.0613	0.5787	0.2312	0.050*	

C12	-0.0882 (11)	1.3819 (5)	-0.01557 (17)	0.0486 (12)	
H12	-0.1473	1.3016	-0.0266	0.058*	
C4	0.3384 (10)	0.5605 (5)	0.18465 (17)	0.0453 (11)	
H4	0.3890	0.4754	0.1914	0.054*	
O1W	0.3552 (8)	1.0793 (4)	0.20033 (14)	0.0698 (13)	
N2	-0.2780 (8)	1.2853 (4)	0.08451 (13)	0.0439 (10)	
C13	-0.1072 (11)	1.5492 (5)	0.03729 (17)	0.0492 (12)	
H13	-0.1788	1.5841	0.0625	0.059*	
C10	-0.4037 (11)	1.3552 (6)	0.04620 (19)	0.0576 (15)	
H10A	-0.5411	1.4144	0.0562	0.069*	
H10B	-0.4942	1.2936	0.0259	0.069*	
C9	-0.1903 (11)	1.1643 (5)	0.08746 (16)	0.0465 (12)	
H9	-0.2064	1.1037	0.0646	0.056*	
N3	-0.2233 (16)	1.3460 (5)	0.12323 (17)	0.092 (2)	
C8	-0.1028 (17)	1.2542 (6)	0.14744 (19)	0.080 (2)	
H8	-0.0398	1.2672	0.1768	0.096*	
O2W	0.746 (3)	0.9295 (7)	0.0049 (2)	0.092 (4)	0.50
H2WA	0.9152	0.9472	0.0077	0.137*	0.50
H2WB	0.5966	0.9714	0.0018	0.137*	0.50
H1WA	0.3201	1.1370	0.2183	0.137*	
H1WB	0.5177	1.0475	0.2023	0.137*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0373 (4)	0.0240 (3)	0.0348 (4)	0.0079 (2)	0.0068 (2)	0.00618 (19)
O3	0.0425 (17)	0.0334 (16)	0.0376 (16)	0.0129 (14)	0.0083 (13)	0.0073 (14)
01	0.0469 (18)	0.0330 (16)	0.0390 (17)	0.0053 (14)	0.0130 (14)	0.0077 (13)
N1	0.0351 (19)	0.0255 (17)	0.0296 (18)	0.0040 (14)	0.0026 (14)	0.0005 (14)
C7	0.037 (2)	0.030 (2)	0.033 (2)	0.0001 (18)	0.0042 (18)	0.0012 (17)
O4	0.063 (2)	0.0381 (18)	0.0418 (18)	0.0049 (16)	0.0205 (16)	0.0073 (15)
N4	0.042 (2)	0.0274 (18)	0.035 (2)	0.0085 (15)	0.0039 (15)	0.0055 (15)
C2	0.038 (2)	0.030 (2)	0.032 (2)	0.0025 (18)	0.0025 (17)	-0.0045 (17)
C3	0.047 (3)	0.031 (2)	0.048 (3)	0.013 (2)	0.009 (2)	-0.003 (2)
C6	0.036 (2)	0.026 (2)	0.030 (2)	0.0017 (17)	-0.0005 (17)	0.0018 (17)
O2	0.063 (2)	0.054 (2)	0.056 (2)	0.0176 (18)	0.0296 (18)	0.0073 (17)
C11	0.043 (3)	0.038 (3)	0.043 (3)	0.010 (2)	-0.006 (2)	0.015 (2)
C1	0.044 (3)	0.031 (2)	0.033 (2)	0.0020 (19)	0.0056 (19)	-0.0015 (17)
C5	0.051 (3)	0.030 (2)	0.044 (3)	0.004 (2)	0.008 (2)	0.008 (2)
C12	0.062 (3)	0.031 (2)	0.051 (3)	0.004 (2)	-0.003 (2)	-0.003 (2)
C4	0.056 (3)	0.024 (2)	0.056 (3)	0.010 (2)	0.008 (2)	0.006 (2)
O1W	0.049 (2)	0.074 (3)	0.083 (3)	0.026 (2)	-0.0229 (19)	-0.046 (2)
N2	0.046 (2)	0.041 (2)	0.045 (2)	0.0095 (18)	-0.0008 (17)	0.0148 (18)
C13	0.066 (3)	0.045 (3)	0.037 (3)	0.013 (3)	0.007 (2)	-0.003 (2)
C10	0.049 (3)	0.060 (3)	0.063 (3)	0.010 (3)	-0.004 (2)	0.034 (3)
C9	0.068 (3)	0.031 (2)	0.040 (3)	0.005 (2)	-0.005 (2)	0.006 (2)
N3	0.173 (6)	0.051 (3)	0.049 (3)	0.057 (4)	-0.007 (3)	0.000 (2)
C8	0.155 (7)	0.043 (3)	0.039 (3)	0.042 (4)	-0.015 (3)	-0.001 (2)

					support	ing information
O2W	0.235 (12)	0.026 (4)	0.017 (3)	0.038 (5)	0.034 (5)	0.010 (3)
Geometr	ric parameters (Å	, <i>°</i>)				
Cu1—N	1	1.908 (2	3)	C11—C10		1.510 (7)
Cu1—N	4	1.950 (3	3)	C5—C4		1.384 (7)
Cu1—O	1	2.006 (3)	С5—Н5		0.9300
Cu1—O	3	2.048 (3)	C12-C13 ⁱ		1.389 (7)
Cu1—O	1W	2.217 (4)	C12—H12		0.9300
O3—C7		1.280 (5)	C4—H4		0.9300
01—C1		1.278 (5)	O1W—H1WA		0.8301
N1-C2		1.322 (5)	O1W—H1WB		0.8599
N1-C6		1.339 (5)	N2—C9		1.319 (6)
C7—O4		1.218 (5)	N2—N3		1.338 (6)
С7—С6		1.517 (5)	N2-C10		1.466 (6)
N4—C9		1.302 (5)	C13-C12 ⁱ		1.389 (7)
N4—C8		1.318 (7)	С13—Н13		0.9300
C2—C3		1.377 (5)	C10—H10A		0.9700
C2-C1		1.520 (5)	C10—H10B		0.9700
C3—C4		1.382 (7)	С9—Н9		0.9300
С3—Н3		0.9300		N3—C8		1.313 (7)
C6—C5		1.367 (6)	C8—H8		0.9300
O2-C1		1.226 (5)	O2W—H2WA		0.8500
С11—С	13	1.364 (3)	O2W—H2WB		0.8482
C11—C	12	1.374 (*	7)			
N1—Cu	1—N4	169.43	(16)	O2—C1—C2		118.8 (4)
N1—Cu	1—01	80.88 (13)	O1—C1—C2		114.4 (4)
N4—Cu	1—01	99.00 (14)	C6—C5—C4		118.7 (4)
N1—Cu	1—03	79.57 (13)	С6—С5—Н5		120.6
N4—Cu	1—03	99.15 (13)	С4—С5—Н5		120.6
O1—Cu	1—03	159.60	(14)	C11-C12-C13 ⁱ		120.7 (5)
N1—Cu	1—01W	96.92 (16)	C11—C12—H12		119.7
N4—Cu	1—01W	93.53 (15)	C13 ⁱ —C12—H12		119.7
O1—Cu	1—01W	99.18 (15)	C3—C4—C5		120.0 (4)
O3—Cu	1—01W	88.91 (16)	С3—С4—Н4		120.0
С7—ОЗ	—Cu1	115.2 (.	3)	С5—С4—Н4		120.0
C101	—Cu1	114.5 (.	3)	Cu1—O1W—H1WA		129.9
C2—N1	—C6	122.9 (4	4)	Cu1—O1W—H1WB		112.7
C2—N1	—Cu1	118.0 (.	3)	H1WA—O1W—H1W	VB	117.2
C6—N1	—Cu1	119.1 (.	3)	C9—N2—N3		109.6 (4)
O4—C7	03	125.5 (*	4)	C9—N2—C10		129.6 (5)
O4—C7	—С6	120.6 (4	4)	N3—N2—C10		120.7 (4)
O3—C7	—C6	113.9 (.	3)	C11-C13-C12 ⁱ		120.6 (5)
C9—N4	C8	103.3 (4	4)	C11—C13—H13		119.7
C9—N4	—Cu1	127.5 (.	3)	C12 ⁱ —C13—H13		119.7
C8—N4	—Cu1	129.2 (3	3)	N2-C10-C11		111.8 (4)
N1—C2	—C3	119.7 (4	4)	N2—C10—H10A		109.2

N1-C2-C1	111.6 (4)	C11—C10—H10A	109.2	
C3—C2—C1	128.7 (4)	N2-C10-H10B	109.2	
C2—C3—C4	118.9 (4)	C11—C10—H10B	109.2	
С2—С3—Н3	120.6	H10A—C10—H10B	107.9	
С4—С3—Н3	120.6	N4—C9—N2	110.2 (4)	
N1—C6—C5	119.9 (4)	N4—C9—H9	124.9	
N1—C6—C7	111.7 (3)	N2—C9—H9	124.9	
С5—С6—С7	128.5 (4)	C8—N3—N2	102.0 (5)	
C13—C11—C12	118.7 (5)	N3	114.9 (5)	
C13—C11—C10	120.4 (5)	N3—C8—H8	122.5	
C12—C11—C10	120.9 (5)	N4	122.5	
02—C1—O1	126.7 (4)	H2WA—O2W—H2WB	137.0	

Symmetry code: (i) -x, -y+3, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
O2W— $H2WA$ ··· $O2W$ ⁱⁱ	0.85	2.15	2.920 (5)	151
O2W— $H2WB$ ··· $O2W$ ⁱⁱⁱ	0.85	1.96	2.807 (5)	179
O1W— $H1WA$ ···O4 ^{iv}	0.83	1.93	2.746 (5)	168
O1W— $H1WB$ ···O3 ^v	0.86	1.86	2.692 (5)	164

Symmetry codes: (ii) -*x*+2, -*y*+2, -*z*; (iii) -*x*+1, -*y*+2, -*z*; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) *x*+1, *y*, *z*.