metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-adamantane-1,3-di­carboxyl­ato-κ4O1,O1′:O3,O3′)bis­­[aqua­(3-carb­oxy­adam­antane-1-carboxyl­ato-κO1)(1,10-phen­an­throline-κ2N,N′)erbium(III)] dihydrate

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn

(Received 8 June 2011; accepted 14 June 2011; online 22 June 2011)

The asymmetric unit of the binuclear centrosymmetric title compound, [Er2(C12H14O4)2(C12H15O4)2(C12H8N2)2(H2O)2]·2H2O, contains one ErIII atom, one coordinated water mol­ecule, one 1,10-phenanthroline (phen) ligand, two differently coordinated adamantane-1,3-dicarboxyl­ate (H2L) ligands and one lattice water mol­ecule. The ErIII ion is eight-coordinated by four O atoms from bridging L2−, one O atom from HL, one O atom from the coordinated water and two N atoms from a phen ligand. Extensive O—H⋯O hydrogen-bonding inter­actions result in the formation of chains which are further linked into a layer-like network by ππ stacking inter­actions centroid–centroid distance = 3.611 (3) Å] between adjacent phen ligands belonging to neighbouring chains. The carboxy group of the HL ligand is equally disordered over two positions.

Related literature

For 1,3-adamantanedicarb­oxy­lic acid, see: Glidewell & Ferguson (1996[Glidewell, C. & Ferguson, G. (1996). Acta Cryst. C52, 1466-1470.]). For lanthanide 1,3-adamantanedicarboxyl­ate complexes, see: Millange et al. (2004[Millange, F., Serre, C., Marrot, J., Gardant, N., Pellé, F. & Férey, G. (2004). J. Mater. Chem. 14, 642-645.]); Li et al. (2009[Li, X., Wei, D. Y., Huang, S. J. & Zheng, Y. Q. (2009). J. Solid State Chem. 182, 95-101.]).

[Scheme 1]

Experimental

Crystal data
  • [Er2(C12H14O4)2(C12H15O4)2(C12H8N2)2(H2O)2]·2H2O

  • Mr = 1657.94

  • Triclinic, [P \overline 1]

  • a = 8.6164 (17) Å

  • b = 13.579 (3) Å

  • c = 14.560 (3) Å

  • α = 94.53 (3)°

  • β = 96.36 (3)°

  • γ = 92.22 (3)°

  • V = 1685.8 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 293 K

  • 0.34 × 0.17 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.600, Tmax = 0.795

  • 16743 measured reflections

  • 7645 independent reflections

  • 6761 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.067

  • S = 1.07

  • 7645 reflections

  • 448 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H91⋯O10 0.85 1.74 2.558 (4) 161.1
O9—H92⋯O1i 0.86 1.92 2.760 (4) 166.7
O10—H101⋯O6 0.85 1.87 2.653 (4) 153.6
O10—H102⋯O4i 0.85 1.87 2.692 (4) 161.8
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As known, lanthanide ions have high affinity for hard donor atoms, and ligands with oxygen or hybrid oxygen-nitrogen atoms, especially multicarboxylate ligands are usually employed in construction for lanthanide complexes (Li et al., 2009). Herein, we report the crystal structure of title compound, [Er(phen)(H2O)(HL)L]2.2H2O, which consist of 1,3-adamantanedicarboxylic acid (H2L), 1,10-phenanthroline and ErCl3.nH2O. This structure indicates that hydrogen-bond and ππ interaction are responsible for supramolecular assemblies.

The asymmetric unit contains one ErIII, one coordination water, two type of 1,3-adamantanedicarboxylate ligands and one lattic water. As show in Fig.1, the ErIII ion is in a eight coordinated fashion by four oxygen atoms from L2-, one oxygen from HL1-, one oxygen from a coordination water and two nitrogen atoms from a 1,10-phenanthroline ligand. Three type kinds of hydrogen-bond are observed in title compound (Table 2). The presence of the extensive hydrogen-bond interaction results in formation of one-dimensional chains, which further grow into two-dimensional layer-like network by ππ stacking interaction between adjacent phen ligands belonging to neighboring chains (Fig. 2).

Related literature top

For 1,3-adamantanedicarboxylic acid, see: Glidewell et al. (1996). For lanthanide 1,3-adamantanedicarboxylate complexes, see: Millange et al. (2004); Li et al. (2009).

Experimental top

Pink powder of ErCl3.nH2O was obtained by slow evaporation of a solution of Er2O3 (0.150 mmol, 0.0574 g) dissolved in HCl (5 ml) under water boiling condition. A mixture of 1,3-adamantanedicarboxylic acid (0.300 mmol, 0.0595 g) in water (10 ml) was stirred for 30 min, and sealed in a 23 ml Teflon-lined stainless autoclave, which was heated at 170°C for three days and thereafter cooled slowly to room temperature, and pink crystals were separated by filtering and washing.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 35% probability level. (# = -x + 1, -y + 1, -z + 1)
[Figure 2] Fig. 2. two-dimensional layer-like structure of the title crystal viewed down the b axis. O—H···O hydrogen bonds are shown as dashed line.
Bis(µ-adamantane-1,3-dicarboxylato- κ4O1,O1':O3,O3')bis[aqua(3- carboxyadamantane-1-carboxylato-κO1)(1,10- phenanthroline-κ2N,N')erbium(III)] dihydrate top
Crystal data top
[Er2(C12H14O4)2(C12H15O4)2(C12H8N2)2(H2O)2]·2H2OZ = 1
Mr = 1657.94F(000) = 836
Triclinic, P1Dx = 1.631 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6164 (17) ÅCell parameters from 16743 reflections
b = 13.579 (3) Åθ = 3.0–27.5°
c = 14.560 (3) ŵ = 2.55 mm1
α = 94.53 (3)°T = 293 K
β = 96.36 (3)°Platelet, pink
γ = 92.22 (3)°0.34 × 0.17 × 0.09 mm
V = 1685.8 (6) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7645 independent reflections
Radiation source: fine-focus sealed tube6761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 911
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.600, Tmax = 0.795l = 1818
16743 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0268P)2 + 1.2992P]
where P = (Fo2 + 2Fc2)/3
7645 reflections(Δ/σ)max = 0.001
448 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Er2(C12H14O4)2(C12H15O4)2(C12H8N2)2(H2O)2]·2H2Oγ = 92.22 (3)°
Mr = 1657.94V = 1685.8 (6) Å3
Triclinic, P1Z = 1
a = 8.6164 (17) ÅMo Kα radiation
b = 13.579 (3) ŵ = 2.55 mm1
c = 14.560 (3) ÅT = 293 K
α = 94.53 (3)°0.34 × 0.17 × 0.09 mm
β = 96.36 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7645 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6761 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.795Rint = 0.031
16743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.07Δρmax = 0.77 e Å3
7645 reflectionsΔρmin = 0.45 e Å3
448 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er0.854312 (16)0.436085 (10)0.306019 (10)0.02576 (5)
O10.8026 (3)0.4032 (2)0.45688 (17)0.0447 (7)
O20.6851 (3)0.30718 (18)0.34156 (16)0.0395 (6)
C10.7032 (4)0.3337 (2)0.4261 (2)0.0287 (7)
C20.6055 (4)0.2855 (2)0.4926 (2)0.0283 (6)
C30.4990 (4)0.1997 (2)0.4425 (2)0.0348 (8)
H3A0.42980.22380.39290.042*
H3B0.56190.14980.41560.042*
C40.4028 (5)0.1547 (2)0.5124 (3)0.0425 (9)
H4A0.33590.09950.48070.051*
C50.5110 (5)0.1166 (3)0.5897 (3)0.0540 (11)
H5A0.57490.06640.56420.065*
H5B0.44990.08690.63330.065*
C60.6162 (5)0.2030 (3)0.6399 (3)0.0426 (9)
H6A0.68570.17840.69000.051*
C70.7134 (4)0.2479 (3)0.5719 (3)0.0371 (8)
H7A0.77960.19860.54710.044*
H7B0.78020.30220.60340.044*
C80.5023 (4)0.3646 (2)0.5333 (2)0.0261 (6)
H8A0.56790.41980.56420.031*
H8B0.43380.38920.48370.031*
C90.3001 (4)0.2325 (2)0.5525 (3)0.0378 (8)
H9A0.23710.20340.59550.045*
H9B0.23020.25610.50290.045*
C100.5148 (4)0.2816 (3)0.6807 (3)0.0388 (8)
H10A0.45470.25340.72560.047*
H10B0.58110.33610.71230.047*
C110.4039 (4)0.3195 (2)0.6031 (2)0.0289 (7)
C120.3065 (4)0.4003 (2)0.6422 (2)0.0314 (7)
O30.1614 (3)0.39715 (18)0.6249 (2)0.0431 (6)
O40.3746 (3)0.47357 (17)0.69327 (19)0.0409 (6)
O51.0009 (3)0.32069 (17)0.25012 (19)0.0390 (6)
O61.2280 (3)0.2688 (2)0.2129 (3)0.0664 (10)
C131.0941 (4)0.2530 (2)0.2328 (3)0.0352 (7)
C141.0322 (4)0.1460 (2)0.2345 (3)0.0334 (7)
C150.8883 (4)0.1286 (2)0.1626 (3)0.0356 (8)
H15A0.91740.13940.10160.043*
H15B0.81030.17540.17690.043*
C160.8190 (5)0.0223 (3)0.1624 (3)0.0438 (9)
C170.7737 (5)0.0062 (3)0.2584 (3)0.0518 (10)
H17A0.69510.05200.27390.062*
H17B0.72970.06050.25880.062*
C180.9169 (5)0.0224 (3)0.3297 (3)0.0540 (11)
H18A0.88660.01160.39120.065*
C190.9834 (5)0.1288 (3)0.3303 (3)0.0438 (9)
H19A0.90510.17480.34560.053*
H19B1.07320.14010.37690.053*
C201.1548 (4)0.0721 (2)0.2106 (3)0.0434 (9)
H20A1.24690.08260.25560.052*
H20B1.18550.08220.14980.052*
C211.0402 (6)0.0498 (3)0.3064 (4)0.0630 (13)
H21A1.13110.03950.35230.076*
H21B0.99880.11720.30740.076*
C221.0864 (5)0.0340 (3)0.2113 (3)0.0536 (11)
H22A1.16530.08090.19620.064*
C230.9438 (5)0.0501 (3)0.1385 (3)0.0527 (11)
H23A0.90150.11750.13700.063*
H23B0.97410.03950.07770.063*
C240.6791 (5)0.0091 (3)0.0904 (3)0.0540 (11)
O7A0.542 (3)0.0103 (12)0.1176 (19)0.105 (5)0.50
O8A0.705 (5)0.037 (5)0.020 (3)0.127 (6)0.50
O7B0.562 (3)0.0412 (12)0.1035 (19)0.105 (5)0.50
O8B0.687 (5)0.014 (5)0.000 (3)0.127 (6)0.50
H810.61390.02530.03850.153*
N10.9027 (4)0.5395 (2)0.1781 (2)0.0382 (7)
C251.0004 (5)0.6182 (3)0.1918 (3)0.0511 (10)
H25A1.05300.63410.25080.061*
C261.0279 (6)0.6785 (3)0.1210 (4)0.0625 (13)
H26A1.09670.73370.13310.075*
C270.9532 (6)0.6557 (3)0.0348 (4)0.0668 (14)
H27A0.97090.69480.01290.080*
C280.8494 (5)0.5730 (3)0.0178 (3)0.0510 (10)
C290.8251 (4)0.5169 (3)0.0924 (3)0.0388 (8)
C300.7153 (4)0.4327 (3)0.0783 (2)0.0378 (8)
C310.7663 (6)0.5436 (4)0.0716 (3)0.0634 (13)
H31A0.78330.57960.12170.076*
C320.6651 (6)0.4659 (4)0.0844 (3)0.0640 (13)
H32A0.61270.44920.14320.077*
C330.6346 (5)0.4071 (3)0.0103 (3)0.0496 (10)
C340.5274 (6)0.3257 (3)0.0201 (3)0.0592 (12)
H34A0.47450.30500.07800.071*
C350.5011 (5)0.2774 (3)0.0544 (3)0.0525 (10)
H35A0.42820.22430.04880.063*
C360.5851 (4)0.3083 (3)0.1406 (3)0.0402 (8)
H36A0.56570.27470.19170.048*
N20.6905 (3)0.3827 (2)0.1527 (2)0.0338 (6)
O91.0952 (3)0.4876 (2)0.37803 (19)0.0491 (7)
H911.17830.46270.36230.059*
H921.12000.51390.43330.059*
O101.3385 (3)0.4392 (3)0.3024 (2)0.0754 (12)
H1011.33020.37870.28220.090*
H1021.43540.45540.30920.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er0.02433 (7)0.02698 (7)0.02613 (8)0.00104 (5)0.00666 (5)0.00200 (5)
O10.0479 (15)0.0530 (15)0.0310 (14)0.0201 (13)0.0093 (11)0.0047 (11)
O20.0471 (14)0.0451 (13)0.0251 (12)0.0129 (12)0.0098 (10)0.0044 (10)
C10.0283 (15)0.0290 (15)0.0286 (17)0.0006 (13)0.0057 (13)0.0018 (12)
C20.0317 (16)0.0274 (14)0.0266 (16)0.0026 (13)0.0076 (13)0.0011 (12)
C30.0405 (18)0.0298 (15)0.0344 (19)0.0008 (15)0.0123 (15)0.0062 (13)
C40.051 (2)0.0226 (15)0.054 (2)0.0067 (16)0.0202 (19)0.0064 (15)
C50.074 (3)0.0287 (17)0.067 (3)0.0111 (19)0.034 (2)0.0138 (18)
C60.057 (2)0.0387 (18)0.037 (2)0.0179 (17)0.0118 (18)0.0140 (15)
C70.0410 (19)0.0342 (17)0.037 (2)0.0134 (15)0.0067 (15)0.0031 (14)
C80.0303 (15)0.0230 (13)0.0252 (16)0.0010 (12)0.0041 (12)0.0023 (11)
C90.0362 (18)0.0314 (16)0.047 (2)0.0051 (15)0.0145 (16)0.0034 (15)
C100.049 (2)0.0393 (18)0.0314 (19)0.0094 (16)0.0137 (16)0.0077 (14)
C110.0313 (16)0.0239 (14)0.0324 (17)0.0025 (13)0.0099 (13)0.0009 (12)
C120.0309 (16)0.0300 (15)0.0346 (18)0.0024 (14)0.0125 (14)0.0016 (13)
O30.0300 (12)0.0370 (13)0.0603 (18)0.0024 (11)0.0068 (12)0.0120 (12)
O40.0302 (12)0.0352 (12)0.0550 (17)0.0021 (11)0.0078 (11)0.0159 (11)
O50.0355 (13)0.0301 (11)0.0510 (16)0.0065 (10)0.0061 (11)0.0030 (11)
O60.0457 (16)0.0422 (15)0.115 (3)0.0023 (14)0.0343 (18)0.0069 (17)
C130.0346 (17)0.0290 (16)0.042 (2)0.0049 (14)0.0054 (15)0.0030 (14)
C140.0302 (16)0.0309 (16)0.0388 (19)0.0059 (14)0.0018 (14)0.0021 (14)
C150.0341 (17)0.0301 (16)0.041 (2)0.0003 (14)0.0005 (15)0.0023 (14)
C160.044 (2)0.0324 (17)0.053 (2)0.0002 (16)0.0001 (18)0.0009 (16)
C170.052 (2)0.044 (2)0.061 (3)0.0044 (19)0.014 (2)0.0074 (19)
C180.063 (3)0.055 (2)0.047 (2)0.000 (2)0.010 (2)0.0157 (19)
C190.048 (2)0.044 (2)0.039 (2)0.0058 (18)0.0029 (17)0.0019 (16)
C200.0353 (18)0.0336 (18)0.060 (3)0.0086 (16)0.0033 (18)0.0024 (17)
C210.069 (3)0.043 (2)0.076 (3)0.003 (2)0.009 (3)0.022 (2)
C220.051 (2)0.0339 (19)0.076 (3)0.0162 (18)0.004 (2)0.0011 (19)
C230.061 (3)0.0276 (17)0.068 (3)0.0018 (18)0.007 (2)0.0054 (17)
C240.047 (2)0.053 (2)0.058 (3)0.013 (2)0.000 (2)0.004 (2)
O7A0.057 (6)0.161 (16)0.092 (8)0.030 (11)0.012 (5)0.021 (12)
O8A0.064 (9)0.26 (3)0.039 (13)0.042 (10)0.024 (8)0.014 (11)
O7B0.057 (6)0.161 (16)0.092 (8)0.030 (11)0.012 (5)0.021 (12)
O8B0.064 (9)0.26 (3)0.039 (13)0.042 (10)0.024 (8)0.014 (11)
N10.0420 (17)0.0344 (15)0.0405 (18)0.0049 (13)0.0130 (14)0.0048 (12)
C250.051 (2)0.042 (2)0.064 (3)0.0014 (19)0.020 (2)0.0091 (19)
C260.066 (3)0.039 (2)0.089 (4)0.005 (2)0.029 (3)0.018 (2)
C270.080 (3)0.054 (3)0.080 (4)0.023 (2)0.042 (3)0.031 (2)
C280.060 (3)0.053 (2)0.048 (2)0.025 (2)0.024 (2)0.0204 (19)
C290.0420 (19)0.0410 (18)0.038 (2)0.0188 (16)0.0156 (16)0.0078 (15)
C300.044 (2)0.0426 (18)0.0296 (18)0.0190 (16)0.0097 (15)0.0025 (14)
C310.086 (4)0.072 (3)0.041 (3)0.037 (3)0.023 (2)0.023 (2)
C320.084 (3)0.079 (3)0.032 (2)0.035 (3)0.007 (2)0.004 (2)
C330.056 (2)0.066 (3)0.028 (2)0.028 (2)0.0028 (17)0.0042 (17)
C340.065 (3)0.068 (3)0.039 (2)0.017 (2)0.009 (2)0.012 (2)
C350.046 (2)0.055 (2)0.050 (3)0.004 (2)0.0093 (19)0.011 (2)
C360.0388 (19)0.0399 (19)0.039 (2)0.0026 (16)0.0014 (16)0.0037 (15)
N20.0345 (15)0.0379 (15)0.0295 (15)0.0089 (13)0.0051 (12)0.0006 (12)
O90.0301 (13)0.0638 (17)0.0483 (17)0.0018 (13)0.0023 (12)0.0239 (13)
O100.0380 (16)0.094 (2)0.088 (3)0.0218 (17)0.0258 (16)0.048 (2)
Geometric parameters (Å, º) top
Er—O52.212 (2)C16—C171.521 (6)
Er—O92.277 (3)C16—C231.534 (6)
Er—O22.360 (2)C17—C181.519 (6)
Er—O12.362 (3)C17—H17A0.9700
Er—O4i2.363 (2)C17—H17B0.9700
Er—O3i2.419 (2)C18—C211.521 (7)
Er—N12.480 (3)C18—C191.532 (5)
Er—N22.543 (3)C18—H18A0.9800
Er—C12.727 (3)C19—H19A0.9700
Er—C12i2.763 (3)C19—H19B0.9700
O1—C11.270 (4)C20—C221.537 (5)
O2—C11.246 (4)C20—H20A0.9700
C1—C21.520 (4)C20—H20B0.9700
C2—C71.533 (5)C21—C221.512 (7)
C2—C31.539 (4)C21—H21A0.9700
C2—C81.544 (4)C21—H21B0.9700
C3—C41.530 (5)C22—C231.529 (6)
C3—H3A0.9700C22—H22A0.9800
C3—H3B0.9700C23—H23A0.9700
C4—C51.517 (6)C23—H23B0.9700
C4—C91.526 (5)C24—O8A1.16 (6)
C4—H4A0.9800C24—O7B1.23 (3)
C5—C61.538 (6)C24—O7A1.29 (3)
C5—H5A0.9700C24—O8B1.33 (5)
C5—H5B0.9700O8A—H811.0865
C6—C71.515 (5)O8B—H810.8244
C6—C101.531 (5)N1—C251.323 (5)
C6—H6A0.9800N1—C291.356 (5)
C7—H7A0.9700C25—C261.401 (6)
C7—H7B0.9700C25—H25A0.9300
C8—C111.541 (4)C26—C271.353 (8)
C8—H8A0.9700C26—H26A0.9300
C8—H8B0.9700C27—C281.396 (7)
C9—C111.541 (4)C27—H27A0.9300
C9—H9A0.9700C28—C291.405 (5)
C9—H9B0.9700C28—C311.434 (7)
C10—C111.532 (5)C29—C301.442 (5)
C10—H10A0.9700C30—N21.356 (5)
C10—H10B0.9700C30—C331.407 (5)
C11—C121.520 (4)C31—C321.330 (7)
C12—O31.246 (4)C31—H31A0.9300
C12—O41.276 (4)C32—C331.433 (6)
C12—Eri2.763 (3)C32—H32A0.9300
O3—Eri2.419 (2)C33—C341.401 (7)
O4—Eri2.363 (2)C34—C351.347 (7)
O5—C131.272 (4)C34—H34A0.9300
O6—C131.236 (4)C35—C361.402 (5)
C13—C141.530 (4)C35—H35A0.9300
C14—C151.529 (5)C36—N21.320 (5)
C14—C191.533 (5)C36—H36A0.9300
C14—C201.534 (5)O9—H910.8498
C15—C161.541 (5)O9—H920.8558
C15—H15A0.9700O10—H1010.8480
C15—H15B0.9700O10—H1020.8481
C16—C241.503 (6)
O5—Er—O978.78 (9)O6—C13—O5124.0 (3)
O5—Er—O287.54 (9)O6—C13—C14119.1 (3)
O9—Er—O2128.70 (11)O5—C13—C14116.9 (3)
O5—Er—O1109.70 (10)C15—C14—C13108.1 (3)
O9—Er—O183.85 (10)C15—C14—C19108.6 (3)
O2—Er—O154.79 (8)C13—C14—C19110.3 (3)
O5—Er—O4i154.07 (9)C15—C14—C20108.9 (3)
O9—Er—O4i125.76 (9)C13—C14—C20111.6 (3)
O2—Er—O4i82.43 (9)C19—C14—C20109.2 (3)
O1—Er—O4i83.74 (10)C14—C15—C16110.4 (3)
O5—Er—O3i148.03 (8)C14—C15—H15A109.6
O9—Er—O3i71.80 (9)C16—C15—H15A109.6
O2—Er—O3i120.65 (9)C14—C15—H15B109.6
O1—Er—O3i79.70 (10)C16—C15—H15B109.6
O4i—Er—O3i54.06 (8)H15A—C15—H15B108.1
O5—Er—N190.47 (10)C24—C16—C17111.2 (3)
O9—Er—N188.61 (11)C24—C16—C23110.3 (3)
O2—Er—N1141.19 (10)C17—C16—C23109.4 (4)
O1—Er—N1156.51 (10)C24—C16—C15108.2 (3)
O4i—Er—N182.73 (10)C17—C16—C15109.1 (3)
O3i—Er—N176.82 (10)C23—C16—C15108.6 (3)
O5—Er—N279.96 (10)C18—C17—C16109.8 (3)
O9—Er—N2146.34 (10)C18—C17—H17A109.7
O2—Er—N275.75 (9)C16—C17—H17A109.7
O1—Er—N2128.10 (9)C18—C17—H17B109.7
O4i—Er—N274.42 (9)C16—C17—H17B109.7
O3i—Er—N2119.14 (10)H17A—C17—H17B108.2
N1—Er—N265.76 (10)C17—C18—C21110.0 (4)
O5—Er—C1100.85 (10)C17—C18—C19109.4 (4)
O9—Er—C1108.07 (11)C21—C18—C19109.8 (4)
O2—Er—C127.15 (9)C17—C18—H18A109.2
O1—Er—C127.72 (9)C21—C18—H18A109.2
O4i—Er—C180.62 (10)C19—C18—H18A109.2
O3i—Er—C199.93 (9)C14—C19—C18109.5 (3)
N1—Er—C1161.29 (10)C14—C19—H19A109.8
N2—Er—C1101.33 (10)C18—C19—H19A109.8
O5—Er—C12i170.85 (9)C14—C19—H19B109.8
O9—Er—C12i98.32 (10)C18—C19—H19B109.8
O2—Er—C12i100.90 (9)H19A—C19—H19B108.2
O1—Er—C12i78.40 (10)C14—C20—C22109.7 (3)
O4i—Er—C12i27.44 (9)C14—C20—H20A109.7
O3i—Er—C12i26.80 (9)C22—C20—H20A109.7
N1—Er—C12i80.75 (10)C14—C20—H20B109.7
N2—Er—C12i98.56 (10)C22—C20—H20B109.7
C1—Er—C12i88.30 (10)H20A—C20—H20B108.2
C1—O1—Er92.4 (2)C22—C21—C18109.4 (4)
C1—O2—Er93.07 (19)C22—C21—H21A109.8
O2—C1—O1119.4 (3)C18—C21—H21A109.8
O2—C1—C2121.0 (3)C22—C21—H21B109.8
O1—C1—C2119.6 (3)C18—C21—H21B109.8
O2—C1—Er59.78 (17)H21A—C21—H21B108.2
O1—C1—Er59.92 (17)C21—C22—C23110.2 (4)
C2—C1—Er173.5 (2)C21—C22—C20109.6 (4)
C1—C2—C7109.6 (3)C23—C22—C20109.0 (3)
C1—C2—C3111.3 (3)C21—C22—H22A109.4
C7—C2—C3110.0 (3)C23—C22—H22A109.4
C1—C2—C8108.1 (2)C20—C22—H22A109.4
C7—C2—C8109.0 (3)C22—C23—C16109.6 (3)
C3—C2—C8108.8 (3)C22—C23—H23A109.8
C4—C3—C2109.0 (3)C16—C23—H23A109.8
C4—C3—H3A109.9C22—C23—H23B109.8
C2—C3—H3A109.9C16—C23—H23B109.8
C4—C3—H3B109.9H23A—C23—H23B108.2
C2—C3—H3B109.9O8A—C24—O7B126 (2)
H3A—C3—H3B108.3O8A—C24—O7A122 (3)
C5—C4—C9110.0 (3)O7B—C24—O7A34.3 (12)
C5—C4—C3109.9 (3)O8A—C24—O8B18 (5)
C9—C4—C3109.8 (3)O7B—C24—O8B111 (2)
C5—C4—H4A109.1O7A—C24—O8B117 (2)
C9—C4—H4A109.1O8A—C24—C16112.4 (18)
C3—C4—H4A109.1O7B—C24—C16120.9 (13)
C4—C5—C6109.4 (3)O7A—C24—C16118.4 (12)
C4—C5—H5A109.8O8B—C24—C16123.7 (19)
C6—C5—H5A109.8C24—O8A—H81118.2
C4—C5—H5B109.8C24—O8B—H81126.2
C6—C5—H5B109.8C25—N1—C29118.7 (3)
H5A—C5—H5B108.3C25—N1—Er121.6 (3)
C7—C6—C10109.6 (3)C29—N1—Er119.8 (2)
C7—C6—C5109.6 (3)N1—C25—C26122.6 (5)
C10—C6—C5109.6 (3)N1—C25—H25A118.7
C7—C6—H6A109.3C26—C25—H25A118.7
C10—C6—H6A109.3C27—C26—C25119.2 (4)
C5—C6—H6A109.3C27—C26—H26A120.4
C6—C7—C2109.7 (3)C25—C26—H26A120.4
C6—C7—H7A109.7C26—C27—C28119.8 (4)
C2—C7—H7A109.7C26—C27—H27A120.1
C6—C7—H7B109.7C28—C27—H27A120.1
C2—C7—H7B109.7C27—C28—C29118.0 (4)
H7A—C7—H7B108.2C27—C28—C31123.1 (4)
C11—C8—C2109.9 (2)C29—C28—C31118.9 (4)
C11—C8—H8A109.7N1—C29—C28121.8 (4)
C2—C8—H8A109.7N1—C29—C30118.6 (3)
C11—C8—H8B109.7C28—C29—C30119.7 (4)
C2—C8—H8B109.7N2—C30—C33122.3 (4)
H8A—C8—H8B108.2N2—C30—C29118.0 (3)
C4—C9—C11109.6 (3)C33—C30—C29119.7 (4)
C4—C9—H9A109.8C32—C31—C28121.3 (4)
C11—C9—H9A109.8C32—C31—H31A119.4
C4—C9—H9B109.8C28—C31—H31A119.4
C11—C9—H9B109.8C31—C32—C33122.0 (4)
H9A—C9—H9B108.2C31—C32—H32A119.0
C11—C10—C6109.8 (3)C33—C32—H32A119.0
C11—C10—H10A109.7C34—C33—C30117.5 (4)
C6—C10—H10A109.7C34—C33—C32124.0 (4)
C11—C10—H10B109.7C30—C33—C32118.5 (4)
C6—C10—H10B109.7C35—C34—C33119.9 (4)
H10A—C10—H10B108.2C35—C34—H34A120.0
C12—C11—C10110.4 (3)C33—C34—H34A120.0
C12—C11—C9111.6 (3)C34—C35—C36119.1 (4)
C10—C11—C9109.5 (3)C34—C35—H35A120.5
C12—C11—C8107.9 (2)C36—C35—H35A120.5
C10—C11—C8108.6 (3)N2—C36—C35123.2 (4)
C9—C11—C8108.8 (3)N2—C36—H36A118.4
O3—C12—O4119.0 (3)C35—C36—H36A118.4
O3—C12—C11121.5 (3)C36—N2—C30118.0 (3)
O4—C12—C11119.4 (3)C36—N2—Er124.2 (2)
O3—C12—Eri61.06 (17)C30—N2—Er117.8 (2)
O4—C12—Eri58.57 (16)Er—O9—H91122.1
C11—C12—Eri171.5 (2)Er—O9—H92128.7
C12—O3—Eri92.14 (19)H91—O9—H92105.2
C12—O4—Eri94.0 (2)H101—O10—H102106.4
C13—O5—Er169.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O100.851.742.558 (4)161.1
O9—H92···O1ii0.861.922.760 (4)166.7
O10—H101···O60.851.872.653 (4)153.6
O10—H102···O4ii0.851.872.692 (4)161.8
Symmetry code: (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Er2(C12H14O4)2(C12H15O4)2(C12H8N2)2(H2O)2]·2H2O
Mr1657.94
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6164 (17), 13.579 (3), 14.560 (3)
α, β, γ (°)94.53 (3), 96.36 (3), 92.22 (3)
V3)1685.8 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.34 × 0.17 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.600, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
16743, 7645, 6761
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.07
No. of reflections7645
No. of parameters448
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H91···O100.851.742.558 (4)161.1
O9—H92···O1i0.861.922.760 (4)166.7
O10—H101···O60.851.872.653 (4)153.6
O10—H102···O4i0.851.872.692 (4)161.8
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Sincere thanks are also extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationGlidewell, C. & Ferguson, G. (1996). Acta Cryst. C52, 1466–1470.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, X., Wei, D. Y., Huang, S. J. & Zheng, Y. Q. (2009). J. Solid State Chem. 182, 95–101.  CrossRef CAS Google Scholar
First citationMillange, F., Serre, C., Marrot, J., Gardant, N., Pellé, F. & Férey, G. (2004). J. Mater. Chem. 14, 642–645.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds