organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-Ethyl 2-benzyl­­idene-3-oxo­butano­ate

aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan
*Correspondence e-mail: Lab7-Bsu@mail.ru

(Received 10 June 2011; accepted 25 June 2011; online 30 June 2011)

The title mol­ecule, C13H14O3, adopts a Z conformation about the C=C double bond. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds with phenyl –CH atoms functioning as donors and the carbonyl O atom of an ester group as acceptor are observed.

Related literature

For applications of β-keto ester derivatives, see: Benetti et al. (1995[Benetti, S., Romagnoli, R., Risi, C. D., Spalluto, G. & Zanirato, V. (1995). Chem. Rev. 95, 1065-1114.]); Simon et al. (2004[Simon, C., Constantieux, T. & Rodriguez, J. (2004). Eur. J. Org. Chem. pp. 4957-4980.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14O3

  • Mr = 218.24

  • Orthorhombic, P b c a

  • a = 7.8406 (5) Å

  • b = 16.8767 (12) Å

  • c = 17.5420 (13) Å

  • V = 2321.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.03 × 0.03 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998)[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.] Tmin = 0.997, Tmax = 0.998

  • 17709 measured reflections

  • 2515 independent reflections

  • 1459 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.125

  • S = 1.00

  • 2515 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2 0.93 2.62 3.544 (3) 170
C5—H5A⋯O2 0.93 2.65 3.412 (3) 140

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruke AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Keto ester derivatives, as important synthetic intermediates, are widely applied in the synthesis of new heterocyclic derivatives presenting new pharmacological properties (Benetti et al., 1995; Simon et al., 2004). The molecular structure of the title compound adopts a Z-conformation at the carbon-carbon double bond (Fig. 1). The molecules are connected mainly by intermolecular C—H···O interactions (Table 1).

Related literature top

For applications of β-keto ester derivatives, see: Benetti et al. (1995); Simon et al. (2004).

Experimental top

Benzaldehyde (20 mmol) and acetoacetic ester (20 mmol) were dissolved in 20 mL ethanol. After adding 0.50 mL piperidine mixture was stirred at room tempertue for 10 h. White crystals were obtained. The crystals were filtered off and washed with ethanol. Then they were dissolved in ethanol (20 mL) and recrystallised to yield colourless block-shaped crystals of the title compound.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl C) was applied.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
(Z)-Ethyl 2-benzylidene-3-oxobutanoate top
Crystal data top
C13H14O3F(000) = 928
Mr = 218.24Dx = 1.249 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1409 reflections
a = 7.8406 (5) Åθ = 2.3–21.4°
b = 16.8767 (12) ŵ = 0.09 mm1
c = 17.5420 (13) ÅT = 296 K
V = 2321.2 (3) Å3Prism, colourless
Z = 80.03 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2515 independent reflections
Radiation source: fine-focus sealed tube1459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
phi and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.997, Tmax = 0.998k = 2121
17709 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.125H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.8814P]
where P = (Fo2 + 2Fc2)/3
2515 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H14O3V = 2321.2 (3) Å3
Mr = 218.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8406 (5) ŵ = 0.09 mm1
b = 16.8767 (12) ÅT = 296 K
c = 17.5420 (13) Å0.03 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
2515 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1459 reflections with I > 2σ(I)
Tmin = 0.997, Tmax = 0.998Rint = 0.073
17709 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
2515 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3871 (2)0.22540 (10)0.50159 (10)0.0679 (5)
O20.4542 (2)0.17527 (10)0.66960 (9)0.0577 (5)
O30.66163 (18)0.11601 (9)0.60314 (8)0.0488 (4)
C10.3604 (3)0.03682 (12)0.61668 (12)0.0416 (5)
C20.4421 (3)0.02544 (14)0.68650 (12)0.0511 (6)
H2A0.47780.02510.70040.061*
C30.4706 (3)0.08813 (15)0.73500 (14)0.0599 (7)
H3A0.52660.07980.78100.072*
C40.4170 (3)0.16243 (15)0.71591 (15)0.0620 (7)
H4A0.43710.20470.74880.074*
C50.3338 (3)0.17479 (15)0.64858 (16)0.0634 (7)
H5A0.29600.22540.63600.076*
C60.3056 (3)0.11284 (14)0.59944 (14)0.0510 (6)
H6A0.24880.12200.55380.061*
C70.3282 (3)0.02582 (13)0.56098 (12)0.0417 (5)
H7A0.25760.01110.52080.050*
C80.3835 (3)0.10083 (13)0.55822 (11)0.0403 (5)
C90.5003 (3)0.13555 (12)0.61673 (12)0.0410 (5)
C100.7862 (3)0.14424 (16)0.65832 (14)0.0585 (7)
H10A0.75930.12420.70870.070*
H10B0.78590.20170.66010.070*
C110.9541 (3)0.11498 (19)0.63350 (16)0.0738 (8)
H11A1.03950.13120.66950.111*
H11B0.98070.13650.58420.111*
H11C0.95180.05820.63060.111*
C120.3325 (3)0.15853 (15)0.49856 (13)0.0485 (6)
C130.2141 (3)0.13393 (17)0.43558 (14)0.0677 (8)
H13A0.17070.18020.41030.102*
H13B0.12090.10410.45650.102*
H13C0.27490.10170.39960.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0888 (13)0.0502 (11)0.0645 (11)0.0025 (10)0.0006 (10)0.0121 (9)
O20.0627 (11)0.0574 (10)0.0530 (10)0.0107 (8)0.0007 (8)0.0164 (8)
O30.0411 (8)0.0639 (10)0.0414 (9)0.0030 (7)0.0003 (7)0.0061 (7)
C10.0414 (11)0.0441 (13)0.0392 (12)0.0014 (10)0.0031 (9)0.0016 (10)
C20.0671 (15)0.0430 (13)0.0433 (13)0.0046 (11)0.0060 (11)0.0027 (11)
C30.0719 (17)0.0594 (16)0.0484 (15)0.0003 (13)0.0031 (13)0.0102 (12)
C40.0742 (17)0.0507 (15)0.0609 (16)0.0039 (13)0.0113 (14)0.0130 (13)
C50.0754 (18)0.0447 (14)0.0702 (18)0.0076 (13)0.0139 (15)0.0028 (13)
C60.0534 (14)0.0493 (14)0.0501 (14)0.0056 (11)0.0029 (11)0.0042 (12)
C70.0407 (11)0.0483 (13)0.0359 (11)0.0035 (10)0.0023 (9)0.0031 (10)
C80.0379 (11)0.0484 (13)0.0347 (11)0.0081 (10)0.0010 (9)0.0003 (10)
C90.0455 (12)0.0388 (11)0.0386 (12)0.0037 (10)0.0046 (10)0.0029 (10)
C100.0505 (14)0.0740 (18)0.0510 (14)0.0034 (13)0.0098 (11)0.0061 (13)
C110.0472 (15)0.106 (2)0.0685 (17)0.0017 (15)0.0065 (13)0.0004 (16)
C120.0501 (13)0.0554 (15)0.0401 (13)0.0112 (12)0.0055 (11)0.0027 (11)
C130.0714 (18)0.0825 (19)0.0492 (14)0.0105 (15)0.0126 (13)0.0149 (14)
Geometric parameters (Å, º) top
O1—C121.208 (3)C6—H6A0.9300
O2—C91.200 (2)C7—C81.339 (3)
O3—C91.329 (2)C7—H7A0.9300
O3—C101.455 (3)C8—C121.484 (3)
C1—C61.386 (3)C8—C91.495 (3)
C1—C21.395 (3)C10—C111.472 (3)
C1—C71.462 (3)C10—H10A0.9700
C2—C31.376 (3)C10—H10B0.9700
C2—H2A0.9300C11—H11A0.9600
C3—C41.364 (4)C11—H11B0.9600
C3—H3A0.9300C11—H11C0.9600
C4—C51.365 (4)C12—C131.502 (3)
C4—H4A0.9300C13—H13A0.9600
C5—C61.373 (3)C13—H13B0.9600
C5—H5A0.9300C13—H13C0.9600
C9—O3—C10116.00 (17)O2—C9—O3124.3 (2)
C6—C1—C2117.5 (2)O2—C9—C8124.4 (2)
C6—C1—C7118.0 (2)O3—C9—C8111.27 (18)
C2—C1—C7124.5 (2)O3—C10—C11107.1 (2)
C3—C2—C1120.8 (2)O3—C10—H10A110.3
C3—C2—H2A119.6C11—C10—H10A110.3
C1—C2—H2A119.6O3—C10—H10B110.3
C4—C3—C2120.3 (2)C11—C10—H10B110.3
C4—C3—H3A119.8H10A—C10—H10B108.6
C2—C3—H3A119.8C10—C11—H11A109.5
C3—C4—C5120.0 (2)C10—C11—H11B109.5
C3—C4—H4A120.0H11A—C11—H11B109.5
C5—C4—H4A120.0C10—C11—H11C109.5
C4—C5—C6120.2 (2)H11A—C11—H11C109.5
C4—C5—H5A119.9H11B—C11—H11C109.5
C6—C5—H5A119.9O1—C12—C8119.1 (2)
C5—C6—C1121.2 (2)O1—C12—C13120.7 (2)
C5—C6—H6A119.4C8—C12—C13120.3 (2)
C1—C6—H6A119.4C12—C13—H13A109.5
C8—C7—C1130.7 (2)C12—C13—H13B109.5
C8—C7—H7A114.6H13A—C13—H13B109.5
C1—C7—H7A114.6C12—C13—H13C109.5
C7—C8—C12124.0 (2)H13A—C13—H13C109.5
C7—C8—C9122.95 (19)H13B—C13—H13C109.5
C12—C8—C9113.07 (19)
C6—C1—C2—C31.7 (3)C10—O3—C9—O21.5 (3)
C7—C1—C2—C3178.6 (2)C10—O3—C9—C8177.80 (18)
C1—C2—C3—C40.9 (4)C7—C8—C9—O297.9 (3)
C2—C3—C4—C50.4 (4)C12—C8—C9—O280.6 (3)
C3—C4—C5—C60.8 (4)C7—C8—C9—O381.4 (2)
C4—C5—C6—C10.0 (4)C12—C8—C9—O3100.1 (2)
C2—C1—C6—C51.2 (3)C9—O3—C10—C11178.9 (2)
C7—C1—C6—C5179.0 (2)C7—C8—C12—O1178.8 (2)
C6—C1—C7—C8171.0 (2)C9—C8—C12—O10.3 (3)
C2—C1—C7—C89.3 (4)C7—C8—C12—C130.9 (3)
C1—C7—C8—C12177.4 (2)C9—C8—C12—C13179.4 (2)
C1—C7—C8—C91.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.932.623.544 (3)170
C5—H5A···O20.932.653.412 (3)140

Experimental details

Crystal data
Chemical formulaC13H14O3
Mr218.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.8406 (5), 16.8767 (12), 17.5420 (13)
V3)2321.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.03 × 0.03 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.997, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
17709, 2515, 1459
Rint0.073
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.125, 1.00
No. of reflections2515
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.932.623.544 (3)170
C5—H5A···O20.932.6483.412 (3)140
 

Acknowledgements

The author thanks Professor Victor N. Khrustalev for fruitful discussions and help in this work.

References

First citationBenetti, S., Romagnoli, R., Risi, C. D., Spalluto, G. & Zanirato, V. (1995). Chem. Rev. 95, 1065–1114.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruke AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, C., Constantieux, T. & Rodriguez, J. (2004). Eur. J. Org. Chem. pp. 4957–4980.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds