# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-(3-Fluorophenyl)-4,4,6-trimethyl-3,4dihydropyrimidine-2(1*H*)-thione

#### Bohari M. Yamin,\* Ruhana L. Lawi and Halima F. Salem

School of Chemical Sciences and Food Technology, Univeriti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia Correspondence e-mail: bohari@ukm.my

Received 11 June 2011; accepted 17 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.153; data-to-parameter ratio = 15.9.

In the title compound,  $C_{13}H_{15}FN_2S$ , the dihydropyrimidine ring is essentially planar, with a maximum deviation of 0.086 (3) Å from the mean plane of the rest of the ring for the dimethylated C atom. The benzene ring is almost perpendicular to the dihydropyrimidine ring, with a dihedral angle of 83.97 (14)°. The crystal packing is characterized by centrosymmetric dimers resulting from pairs of intermolecular N— H···S hydrogen bonds. There are also C—H··· $\pi$  interactions.

#### **Related literature**

For the biological properties of related compounds, see: Rovnyak *et al.* (1995); Kappe (2000); Alam *et al.* (2005); Sriram *et al.* (2006); Leite *et al.* (2006). For related structures, see: Yamin *et al.* (2005); Ismail *et al.* (2007); Saeed *et al.* (2010); Yamin & Salem (2011). For standard bond lengths, see: Allen *et al.* (1987).



#### **Experimental**

#### Crystal data

| $C_{13}H_{15}FN_2S$            |
|--------------------------------|
| $M_r = 250.33$                 |
| Monoclinic, P21/c              |
| $a = 8.814 (3) \text{ Å}_{a}$  |
| b = 14.997(5) Å                |
| c = 10.215 (3) Å               |
| $\beta = 95.711 \ (6)^{\circ}$ |
|                                |

| V = 1343.6 (7) Å <sup>3</sup>                |
|----------------------------------------------|
| Z = 4                                        |
| Mo Ka radiation                              |
| $\mu = 0.23 \text{ mm}^{-1}$                 |
| T = 298  K                                   |
| $0.50 \times 0.29 \times 0.20 \ \mathrm{mm}$ |
|                                              |

#### Data collection

Bruker SMART APEX CCD areadetector diffractometer7116 measured reflectionsAbsorption correction: multi-scan2497 independent reflections(SADABS; Bruker, 2000)1764 reflections with  $I > 2\sigma(I)$  $T_{min} = 0.892, T_{max} = 0.954$  $R_{int} = 0.034$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.059 & 157 \text{ parameters} \\ wR(F^2) &= 0.153 & H\text{-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3} \\ 2497 \text{ reflections} & \Delta\rho_{\text{min}} = -0.17 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/N2/C1-C4 pyrimidine ring.

| $D - H \cdots A$                                    | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $N1 - H1A \cdots S1^{i}$ $C9 - H9A \cdots Cg1^{ii}$ | 0.86<br>0.93 | 2.57<br>2.89            | 3.400 (3)<br>3.788 (4) | 162<br>163                           |
|                                                     |              |                         |                        |                                      |

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii)  $x, -y - \frac{1}{2}, z - \frac{3}{2}$ .

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors thank both The Ministry of Higher Education of Malaysia for the Research Grant UKM-ST-06-FRGS-0114– 2009 and Universiti Kebangsaan Malaysian for the research facilities. The National Science Fellowship (NSF) from The Ministry of Science and Technology (MOSTI) given to RLL is greatly appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2016).

#### References

- Alam, O., Imran, M. & Khan, S. A. (2005). Indian J. Heterocycl. Chem. 14, 293–296.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ismail, N. L., Othman, E. & Yamin, B. M. (2007). Acta Cryst. E63, o2442o2443.
- Kappe, C. O. (2000). Acc. Chem. Res. 33, 879-888.
- Leite, A. C. L., Lima, R. S., Moreira, D. R. M., Cardoso, M. V. O., Brito, A. C. G., Santos, L. M. F., Hernandes, M. Z., Kiperstok, A. C., Lima, R. S. & Soares, M. B. P. (2006). *Bioorg. Med. Chem.* 14, 3749–3757.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J., Hedberg, A., Malley, M., McCarthy, J. P., Zhang, R. & Moreland, S. (1995). J. Med. Chem. 38, 119–129.
- Saeed, A., Khera, R. A. & Parvez, M. (2010). Acta Cryst. E66, 0635.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sriram, D., Yogeeswari, P. & Devakaram, R. V. (2006). Bioorg. Med. Chem. 14, 3113–3118.

Yamin, B. M., Kasim, N. A. M. & Hamzah, N. (2005). Acta Cryst. E61, 055–057. Yamin, B. M. & Salem, H. F. (2011). Acta Cryst. E67, 0282.

# supporting information

## Acta Cryst. (2011). E67, o1810 [doi:10.1107/S1600536811023671]

# 1-(3-Fluorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione

## Bohari M. Yamin, Ruhana L. Lawi and Halima F. Salem

## S1. Comment

Pyrimidine-2(1*H*)-ones/thiones are calcium channel blocker compounds (Rovnyak *et al.*, 1995). They also have other biological activities such as antibacterial, antifungal and antiviral (Kappe, 2000; Alam *et al.*, 2005; Sriram *et al.*, 2006; Leite *et al.*, 2006). The 4,4,6-trimethyl-1-aryl-3,4-dihydropyrimidine-2-(1*H*)-thiones open a new series of 3,4-dihydro pyrimidine-2-(1*H*)-thione derivatives following publication of 4,4,6- trimethyl-1-phenyl-3,4-dihydropyrimidine-2-(1*H*)-thione (Yamin *et al.*, 2005; Ismail *et al.*, 2007). The title compound is isomorphous to 4,4,6-trimethyl-1-(3-chlorophenyl)-3,4-dihydropyrimidine-2-(1*H*)-thione (Yamin & Salem, 2011) and 4,4,6-trimethyl-1-(3-methylphenyl)-3,4-dihydropyrimidine-2-(1*H*)-thione (Saeed *et al.*, 2010). The dihydropyrimidine (N1,N2,C1—C4) ring is planar with maximum deviation of 0.086 (3)Å for C4 atom from the least square plane. The benzene ring is perpendicular to the dihydropyrimidine with dihedral angle of 83.97 (14)°, slightly smaller than that in the *meta*- chloro analog (86.62 (13)°). The bond lengths and angles are in normal ranges (Allen *et al.*, 1987) and are comparable to those in the above mentioned analogs. In the crystal, the molecules are linked by N1—H1A…S1 intermolecular hydrogen bonds (see symmetry code in Table 2) to form centrosymmetric dimers parallel to the *ab* face (Fig 2). There is also a C9—H9A… $\pi$  interaction involving the pyrimidine (C<sub>g</sub>1: N1/N2/(C1—C4)) ring (Table 2).

## **S2.** Experimental

A procedure similar to that used for the preparation of 4,4,6-Trimethyl-1-(3-chlorophenyl)-3,4-dihydropyrimidine-2-(1*H*)-thione (Yamin & Salem,2011) was followed. Equimolar quantities of thiocyanic acid and 3-fluoroaniline (5.4 mmol) in acetone were stirred for 2–3 h. Colourless crystals of 78% yield were obtained after 3 days by evaporation at room temperature. Melting point 456.8–458.9 K.

## S3. Refinement

H atoms on the C and N atoms were positioned geometrically with C—H= 0.93 (aromatic and olefinic), 0.96 Å (methyl) and N—H = 0.86 Å respectively, and constrained to ride and rotate (for Me groups) on their parent atoms with  $U_{iso}=x_{eq}$ (parent atom) where x=1.2 for N, aromatic C and olefinic C and x=1.5 for methyl C. There is a highest peak and deepest hole of 0.45 from H10 and 0.76Å from F1 atom the respectively.



## Figure 1

Molecular structure of (1), with the atomic-labelling scheme. Displacement ellipsoid are drawn at the 50% probablity level.



## Figure 2

The packing of (1) viewed down the *c* axis. Hydrogen bonds are shown by dashed lines.

## 1-(3-Fluorophenyl)-4,4,6-trimethyl-3,4-dihydropyrimidine-2(1H)-thione

#### Crystal data

C<sub>13</sub>H<sub>15</sub>FN<sub>2</sub>S  $M_r = 250.33$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 8.814 (3) Å b = 14.997 (5) Å c = 10.215 (3) Å  $\beta = 95.711$  (6)° V = 1343.6 (7) Å<sup>3</sup> Z = 4

### Data collection

| Bruker SMART APEX CCD area-detector      | 7116 measured reflections                                                 |
|------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                           | 2497 independent reflections                                              |
| Radiation source: fine-focus sealed tube | 1764 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                   | $R_{\rm int}=0.034$                                                       |
| $\omega$ scans                           | $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ |
| Absorption correction: multi-scan        | $h = -10 \rightarrow 10$                                                  |
| (SADABS; Bruker, 2000)                   | $k = -16 \rightarrow 18$                                                  |
| $T_{\min} = 0.892, \ T_{\max} = 0.954$   | $l = -12 \rightarrow 11$                                                  |
|                                          |                                                                           |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.059$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.153$                               | neighbouring sites                                         |
| S = 1.06                                        | H-atom parameters constrained                              |
| 2497 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0666P)^2 + 0.4935P]$          |
| 157 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                             |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.37$ e Å <sup>-3</sup>             |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ |
|                                                 |                                                            |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 528

 $\theta = 2.3 - 25.5^{\circ}$ 

 $\mu = 0.23 \text{ mm}^{-1}$ 

Block, colourless

 $0.50 \times 0.29 \times 0.20$  mm

T = 298 K

 $D_{\rm x} = 1.238 {\rm Mg} {\rm m}^{-3}$ 

Melting point = 458.9-456.8 K

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2497 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|--------------|-------------|-----------------------------|
| F1  | 0.9699 (2)  | 0.40143 (14) | 0.6648 (2)  | 0.0938 (7)                  |
| S1  | 0.65807 (8) | 0.11011 (5)  | 0.47356 (8) | 0.0623 (3)                  |
| N1  | 0.3831 (3)  | 0.11471 (16) | 0.5539 (2)  | 0.0620 (7)                  |
| H1A | 0.3939      | 0.0577       | 0.5561      | 0.074*                      |

| N2   | 0.4991 (2) | 0.25140 (15) | 0.5427 (2) | 0.0519 (6)  |
|------|------------|--------------|------------|-------------|
| C1   | 0.5038 (3) | 0.1608 (2)   | 0.5251 (3) | 0.0506 (7)  |
| C2   | 0.3725 (3) | 0.2932 (2)   | 0.5938 (3) | 0.0601 (8)  |
| C3   | 0.2523 (4) | 0.2442 (2)   | 0.6138 (4) | 0.0780 (10) |
| H3A  | 0.1727     | 0.2723       | 0.6507     | 0.094*      |
| C4   | 0.2343 (3) | 0.1480 (2)   | 0.5824 (3) | 0.0644 (8)  |
| C5   | 0.3852 (4) | 0.3902 (2)   | 0.6208 (4) | 0.0895 (12) |
| H5A  | 0.2904     | 0.4120       | 0.6471     | 0.134*      |
| H5B  | 0.4085     | 0.4209       | 0.5428     | 0.134*      |
| H5C  | 0.4650     | 0.4006       | 0.6902     | 0.134*      |
| C6   | 0.1856 (5) | 0.0964 (3)   | 0.6999 (5) | 0.1206 (18) |
| H6A  | 0.2611     | 0.1035       | 0.7736     | 0.181*      |
| H6B  | 0.1757     | 0.0343       | 0.6777     | 0.181*      |
| H6C  | 0.0895     | 0.1188       | 0.7222     | 0.181*      |
| C7   | 0.1209 (5) | 0.1335 (3)   | 0.4636 (5) | 0.1154 (16) |
| H7A  | 0.1512     | 0.1673       | 0.3908     | 0.173*      |
| H7B  | 0.0217     | 0.1525       | 0.4832     | 0.173*      |
| H7C  | 0.1177     | 0.0713       | 0.4412     | 0.173*      |
| C8   | 0.6272 (3) | 0.30394 (18) | 0.5099 (3) | 0.0493 (7)  |
| C9   | 0.6358 (4) | 0.3306 (2)   | 0.3822 (3) | 0.0653 (8)  |
| H9A  | 0.5581     | 0.3160       | 0.3174     | 0.078*      |
| C10  | 0.7597 (5) | 0.3789 (2)   | 0.3506 (4) | 0.0802 (11) |
| H10A | 0.7663     | 0.3960       | 0.2638     | 0.096*      |
| C11  | 0.8726 (4) | 0.4018 (2)   | 0.4449 (4) | 0.0747 (10) |
| H11A | 0.9569     | 0.4341       | 0.4238     | 0.090*      |
| C12  | 0.8593 (3) | 0.3763 (2)   | 0.5706 (3) | 0.0606 (8)  |
| C13  | 0.7392 (3) | 0.32727 (19) | 0.6068 (3) | 0.0538 (7)  |
| H13A | 0.7338     | 0.3104       | 0.6938     | 0.065*      |
|      |            |              |            |             |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|-------------|--------------|
| F1         | 0.0710 (13) | 0.0981 (17) | 0.1111 (16) | -0.0189 (11) | 0.0028 (12) | -0.0109 (12) |
| <b>S</b> 1 | 0.0536 (4)  | 0.0493 (5)  | 0.0878 (6)  | -0.0031 (3)  | 0.0263 (4)  | -0.0071 (4)  |
| N1         | 0.0512 (14) | 0.0491 (15) | 0.0893 (18) | -0.0086 (11) | 0.0249 (13) | -0.0059 (13) |
| N2         | 0.0487 (12) | 0.0461 (14) | 0.0630 (14) | -0.0021 (11) | 0.0151 (11) | -0.0044 (11) |
| C1         | 0.0491 (15) | 0.0509 (18) | 0.0527 (16) | -0.0045 (13) | 0.0093 (13) | -0.0007 (13) |
| C2         | 0.0531 (17) | 0.0572 (19) | 0.0717 (19) | 0.0065 (14)  | 0.0151 (15) | -0.0071 (16) |
| C3         | 0.0562 (18) | 0.072 (2)   | 0.110 (3)   | 0.0044 (17)  | 0.0322 (19) | -0.011 (2)   |
| C4         | 0.0487 (16) | 0.066 (2)   | 0.082 (2)   | -0.0057 (15) | 0.0223 (16) | -0.0062 (17) |
| C5         | 0.073 (2)   | 0.063 (2)   | 0.137 (3)   | 0.0071 (17)  | 0.032 (2)   | -0.021 (2)   |
| C6         | 0.125 (4)   | 0.109 (4)   | 0.142 (4)   | 0.007 (3)    | 0.086 (3)   | 0.021 (3)    |
| C7         | 0.071 (3)   | 0.134 (4)   | 0.137 (4)   | -0.004 (2)   | -0.010 (3)  | -0.038 (3)   |
| C8         | 0.0523 (16) | 0.0392 (16) | 0.0582 (17) | -0.0004 (12) | 0.0142 (14) | -0.0044 (13) |
| C9         | 0.079 (2)   | 0.060 (2)   | 0.0577 (18) | -0.0084 (17) | 0.0093 (16) | -0.0043 (15) |
| C10        | 0.116 (3)   | 0.059 (2)   | 0.071 (2)   | -0.019 (2)   | 0.034 (2)   | 0.0013 (17)  |
| C11        | 0.090 (2)   | 0.053 (2)   | 0.088 (3)   | -0.0223 (17) | 0.042 (2)   | -0.0133 (18) |
| C12        | 0.0552 (17) | 0.0483 (18) | 0.079 (2)   | -0.0063 (14) | 0.0102 (16) | -0.0146 (15) |
|            |             |             |             |              |             |              |

# Acta Cryst. (2011). E67, o1810

109.5

H5A—C5—H5C

| C13    | 0.0556 (16)       | 0.0470 (17) | 0.0605 (17) | -0.0005 (13) | 0.0138 (14) | 0.0029 (14) |
|--------|-------------------|-------------|-------------|--------------|-------------|-------------|
| Geomet | ric parameters (Á | , °)        |             |              |             |             |
| F1-C1  | 2                 | 1.353 (3)   |             | С6—Н6А       |             | 0.9600      |
| S1-C1  |                   | 1.687 (3)   |             | C6—H6B       |             | 0.9600      |
| N1—C1  | 1                 | 1.326 (3)   |             | С6—Н6С       |             | 0.9600      |
| N1-C4  | 4                 | 1.460 (4)   |             | С7—Н7А       |             | 0.9600      |
| N1—H   | 1A                | 0.8600      |             | С7—Н7В       |             | 0.9600      |
| N2—C1  | 1                 | 1.372 (4)   |             | C7—H7C       |             | 0.9600      |
| N2-C2  | 2                 | 1.423 (3)   |             | C8—C13       |             | 1.372 (4)   |
| N2-C8  | 3                 | 1.443 (3)   |             | C8—C9        |             | 1.374 (4)   |
| C2—C3  | 3                 | 1.321 (4)   |             | C9—C10       |             | 1.376 (5)   |
| C2—C5  | 5                 | 1.483 (4)   |             | С9—Н9А       |             | 0.9300      |
| C3—C4  | 1                 | 1.483 (5)   |             | C10-C11      |             | 1.359 (5)   |
| С3—Н3  | 3A                | 0.9300      |             | C10—H10A     |             | 0.9300      |
| C4—C7  | 7                 | 1.509 (5)   |             | C11—C12      |             | 1.356 (5)   |
| C4—C6  | 5                 | 1.526 (5)   |             | C11—H11A     |             | 0.9300      |
| С5—Н5  | 5A                | 0.9600      |             | C12—C13      |             | 1.369 (4)   |
| С5—Н5  | 5B                | 0.9600      |             | C13—H13A     |             | 0.9300      |
| С5—Н5  | 5C                | 0.9600      |             |              |             |             |
| C1—N1  | l—C4              | 128.5 (3)   |             | Н6А—С6—Н6В   |             | 109.5       |
| C1—N1  | I—H1A             | 115.7       |             | С4—С6—Н6С    |             | 109.5       |
| C4—N1  | I—H1A             | 115.7       |             | H6A—C6—H6C   |             | 109.5       |
| C1—N2  | 2—С2              | 121.3 (2)   |             | H6B—C6—H6C   |             | 109.5       |
| C1—N2  | 2—С8              | 118.4 (2)   |             | С4—С7—Н7А    |             | 109.5       |
| C2—N2  | 2—С8              | 120.3 (2)   |             | С4—С7—Н7В    |             | 109.5       |
| N1—C1  | l—N2              | 116.8 (2)   |             | H7A—C7—H7B   |             | 109.5       |
| N1-C1  | I—S1              | 121.6 (2)   |             | С4—С7—Н7С    |             | 109.5       |
| N2C1   | I—S1              | 121.5 (2)   |             | H7A—C7—H7C   |             | 109.5       |
| C3—C2  | 2—N2              | 118.8 (3)   |             | H7B—C7—H7C   |             | 109.5       |
| C3—C2  | 2—C5              | 124.3 (3)   |             | С13—С8—С9    |             | 120.5 (3)   |
| N2-C2  | 2—С5              | 116.9 (3)   |             | C13—C8—N2    |             | 119.7 (2)   |
| C2—C3  | 3—C4              | 125.3 (3)   |             | C9—C8—N2     |             | 119.8 (3)   |
| C2—C3  | 3—НЗА             | 117.4       |             | C8—C9—C10    |             | 119.8 (3)   |
| C4—C3  | 3—НЗА             | 117.4       |             | С8—С9—Н9А    |             | 120.1       |
| N1-C4  | 4—C3              | 107.3 (2)   |             | С10—С9—Н9А   |             | 120.1       |
| N1-C4  | 4—C7              | 109.1 (3)   |             | С11—С10—С9   |             | 120.6 (3)   |
| C3—C4  | I—C7              | 111.3 (3)   |             | C11-C10-H10A |             | 119.7       |
| N1-C4  | 4—C6              | 108.1 (3)   |             | C9-C10-H10A  |             | 119.7       |
| C3—C4  | 4—C6              | 110.9 (3)   |             | C12—C11—C10  |             | 118.3 (3)   |
| C7—C4  | 4—C6              | 110.1 (3)   |             | C12-C11-H11A |             | 120.9       |
| C2—C5  | 5—H5A             | 109.5       |             | C10-C11-H11A |             | 120.9       |
| C2—C5  | 5—H5B             | 109.5       |             | F1-C12-C11   |             | 118.0 (3)   |
| H5A—0  | С5—Н5В            | 109.5       |             | F1—C12—C13   |             | 118.7 (3)   |
| C2—C5  | 5—Н5С             | 109.5       |             | C11—C12—C13  |             | 123.3 (3)   |

С12—С13—С8

117.5 (3)

| H5B—C5—H5C<br>C4—C6—H6A<br>C4—C6—H6B                 | 109.5<br>109.5<br>109.5                                                                                                                                                   | C12—C13—H13A<br>C8—C13—H13A                          | 121.2<br>121.2                                                                                                                                                                                        |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 10.7 (4)  -171.0 (2)  2.1 (4)  -178.8 (2)  -176.1 (2)  2.9 (3)  -5.8 (4)  175.2 (3)  174.3 (3)  -4.7 (4)  -2.6 (5)  177.3 (4)  -16.9 (4)  103.7 (4)  -136.5 (3)  12.2 (5) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -107.0 (4)<br>130.1 (4)<br>-96.2 (3)<br>82.9 (3)<br>84.1 (3)<br>-96.8 (3)<br>1.8 (5)<br>-178.5 (3)<br>-1.1 (5)<br>-0.4 (5)<br>-178.1 (3)<br>1.2 (5)<br>178.9 (2)<br>-0.5 (5)<br>-1.0 (4)<br>179.3 (2) |
|                                                      |                                                                                                                                                                           |                                                      |                                                                                                                                                                                                       |

## Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C1–C4 pyrimidine ring.

| D—H···A                    | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|----------------------------|-------------|-------|-----------|-------------------------|
| N1—H1A···S1 <sup>i</sup>   | 0.86        | 2.57  | 3.400 (3) | 162                     |
| C9—H9A···Cg1 <sup>ii</sup> | 0.93        | 2.89  | 3.788 (4) | 163                     |

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, -y-1/2, z-3/2.