organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-[2-(1,3-benzoxazol-2-ylsulfan­yl)acet­yl]-4-hy­dr­oxy-2,6-di­phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 7 June 2011; accepted 13 June 2011; online 18 June 2011)

In the title compound, C29H26N2O5S, the piperidine ring adopts a half-chair conformation. The phenyl rings are oriented at dihedral angles of 75.76 (12) and 86.64 (9)° with respect to the best plane through the piperidine ring. The dihedral angle between the two phenyl rings is 30.81 (13)°. The benzoxazole ring system is approximately planar [maximum deviation = 0.016 (4) Å]. The atoms of the ethyl side chain are disordered over two sets of sites [site occupancies = 0.376 (9) and 0.624 (9)]. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) motif. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions, generating a chain running along the a axis.

Related literature

For the synthesis and biological activity of piperidin-4-one-based amides, see: Aridoss et al. (2010a[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 2242-2249.]). For related structures see: Aridoss et al. (2010a[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 2242-2249.],b[Aridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010b). Acta Cryst. E66, o1982.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C29H26N2O5S

  • Mr = 514.58

  • Monoclinic, P 21 /c

  • a = 12.4630 (2) Å

  • b = 24.3243 (5) Å

  • c = 9.2350 (2) Å

  • β = 109.608 (1)°

  • V = 2637.28 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.23 × 0.2 × 0.18 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.971

  • 25589 measured reflections

  • 6571 independent reflections

  • 4020 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.05

  • 6571 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 1.84 2.558 (2) 145
C13—H13⋯O2i 0.93 2.59 3.263 (2) 130
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The ORTEP diagram of the title compound is shown in Fig. 1. The tetrahydropyridine ring adopts a half-chair conformation. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.3543 (18) Å, q3 = 0.2996 (18) Å, QT = 0.4639 (17)Å and θ = 49.8 (2)°, respectively. The phenyl rings are oriented at dihedral angles of 75.76 (12) and 86.64 (9)° with respect to the best plane through the piperidine ring. The dihedral angle between the two phenyl rings is 30.81 (13)°. The sum of the bond angles around the atom N1 [359.49 (4)°] of the tetrahydropyridine ring in the molecule is in accordance with sp2 hybridization.

The molecular structure is stabilized by a strong O—H···O hydrogen bond, wherein, atom O1 acts as a donor to O2, generating an S(6) motif. The crystal packing is stabilized by C—H···O intermolecular interaction which links the molecules into chain running along the a axis.

Related literature top

For the synthesis and biological activity of piperidin-4-one-based amides, see: Aridoss et al. (2010a). For related structures see: Aridoss et al. (2010a,b). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was prepared from N-bromoacetyl-3-carboxyethyl -2,6-diphenyl-4-hydroxy-Δ3-tetrahydropyridine and benzoxazol -2-thiol according to the literature method (Aridoss et al., 2010a). Single crystals of the target molecule were obtained by the slow evaporation of its ethanolic solution at room temperature.

Refinement top

The C atoms of the ethyl side chain are disordered over two positions (C19/C19' and C20/C20') with refined occupancies of 0.376 (9) and 0.624 (9). The corresponding bond distances involving the disordered atoms were restrained to be equal and also the same Uij parameters were used for atoms C19/C19' and C20/C20'. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed along c axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted
Ethyl 1-[2-(1,3-benzoxazol-2-ylsulfanyl)acetyl]-4-hydroxy-2,6-diphenyl- 1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C29H26N2O5SF(000) = 1080
Mr = 514.58Dx = 1.296 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1535 reflections
a = 12.4630 (2) Åθ = 1.7–28.3°
b = 24.3243 (5) ŵ = 0.16 mm1
c = 9.2350 (2) ÅT = 293 K
β = 109.608 (1)°Block, colourless
V = 2637.28 (9) Å30.23 × 0.2 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6571 independent reflections
Radiation source: fine-focus sealed tube4020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1614
Tmin = 0.963, Tmax = 0.971k = 3230
25589 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.311P]
where P = (Fo2 + 2Fc2)/3
6571 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C29H26N2O5SV = 2637.28 (9) Å3
Mr = 514.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4630 (2) ŵ = 0.16 mm1
b = 24.3243 (5) ÅT = 293 K
c = 9.2350 (2) Å0.23 × 0.2 × 0.18 mm
β = 109.608 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4020 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.033
25589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
6571 reflectionsΔρmin = 0.24 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.88932 (13)0.51361 (7)0.12658 (18)0.0442 (4)
H10.96630.50020.14080.053*
C20.81770 (15)0.46363 (7)0.1329 (2)0.0512 (4)
H2A0.79930.44350.03690.061*
H2B0.86160.43950.21500.061*
C30.71060 (14)0.47926 (7)0.15925 (19)0.0490 (4)
C40.69728 (13)0.52718 (7)0.22370 (19)0.0450 (4)
C50.78980 (13)0.57022 (6)0.27182 (19)0.0422 (4)
H50.80400.57730.38110.051*
C60.75751 (15)0.62540 (7)0.1898 (2)0.0519 (4)
C70.67108 (18)0.63139 (9)0.0521 (2)0.0665 (5)
H70.62990.60070.00420.080*
C80.6440 (3)0.68249 (12)0.0170 (3)0.1006 (9)
H80.58570.68600.11090.121*
C90.7038 (3)0.72767 (13)0.0541 (5)0.1234 (12)
H90.68590.76210.00850.148*
C100.7896 (3)0.72256 (11)0.1916 (5)0.1218 (11)
H100.83010.75350.23930.146*
C110.8165 (2)0.67160 (9)0.2602 (3)0.0862 (7)
H110.87460.66840.35440.103*
C120.85080 (14)0.54573 (7)0.02325 (19)0.0457 (4)
C130.75318 (15)0.53281 (8)0.1447 (2)0.0553 (5)
H130.70800.50350.13520.066*
C140.72199 (19)0.56263 (9)0.2793 (2)0.0685 (6)
H140.65550.55380.35890.082*
C150.7888 (2)0.60518 (9)0.2957 (2)0.0739 (6)
H150.76820.62510.38700.089*
C160.88687 (19)0.61857 (9)0.1767 (3)0.0710 (6)
H160.93270.64730.18800.085*
C170.91674 (16)0.58939 (8)0.0412 (2)0.0567 (5)
H170.98200.59910.03930.068*
C180.59236 (14)0.53668 (9)0.2550 (2)0.0567 (5)
C190.4825 (7)0.6007 (8)0.335 (2)0.139 (5)0.376 (9)
H19A0.42140.58930.24370.167*0.376 (9)
H19B0.46910.58570.42500.167*0.376 (9)
C19'0.4874 (4)0.6022 (5)0.3484 (7)0.0873 (18)0.624 (9)
H19C0.43960.57070.34910.105*0.624 (9)
H19D0.50430.62110.44600.105*0.624 (9)
C200.4919 (7)0.6599 (4)0.3442 (17)0.139 (5)0.376 (9)
H20A0.54410.67040.44300.209*0.376 (9)
H20B0.41840.67560.33030.209*0.376 (9)
H20C0.51940.67310.26510.209*0.376 (9)
C20'0.4273 (4)0.6389 (2)0.2241 (5)0.0873 (18)0.624 (9)
H20D0.47590.66920.22100.131*0.624 (9)
H20E0.36010.65250.24060.131*0.624 (9)
H20F0.40620.61930.12830.131*0.624 (9)
C210.99471 (13)0.55658 (6)0.38113 (19)0.0401 (4)
C221.10534 (13)0.53591 (7)0.3643 (2)0.0474 (4)
H22A1.10210.54120.25880.057*
H22B1.11210.49680.38550.057*
C231.20310 (15)0.63370 (7)0.4034 (2)0.0514 (4)
C241.13948 (18)0.70527 (8)0.2721 (3)0.0639 (5)
C251.2373 (2)0.71956 (8)0.3851 (3)0.0685 (6)
C261.2833 (3)0.77171 (11)0.4042 (4)0.1052 (9)
H261.35140.78030.48130.126*
C271.2207 (4)0.80994 (11)0.3007 (5)0.1154 (11)
H271.24740.84590.30810.138*
C281.1209 (3)0.79739 (11)0.1875 (4)0.1077 (10)
H281.08100.82490.12130.129*
C291.0783 (2)0.74448 (10)0.1695 (3)0.0895 (7)
H291.01090.73560.09140.107*
N10.89780 (10)0.54863 (5)0.26052 (15)0.0399 (3)
N21.11968 (13)0.64910 (6)0.2867 (2)0.0625 (4)
O10.63128 (11)0.43949 (5)0.11907 (15)0.0671 (4)
H1A0.57520.44920.13990.101*
O20.51125 (11)0.50477 (6)0.21915 (18)0.0791 (4)
O30.59263 (10)0.58358 (6)0.32943 (16)0.0657 (4)
O40.99521 (9)0.57867 (5)0.50028 (14)0.0515 (3)
O51.28120 (11)0.67320 (6)0.47306 (16)0.0682 (4)
S11.22926 (4)0.56980 (2)0.48965 (6)0.05622 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0438 (9)0.0380 (9)0.0522 (9)0.0028 (7)0.0179 (7)0.0050 (7)
C20.0582 (10)0.0370 (9)0.0556 (10)0.0000 (8)0.0153 (8)0.0023 (8)
C30.0471 (9)0.0430 (10)0.0487 (9)0.0077 (8)0.0051 (8)0.0074 (8)
C40.0364 (8)0.0479 (10)0.0479 (9)0.0003 (7)0.0105 (7)0.0088 (8)
C50.0376 (8)0.0429 (9)0.0481 (9)0.0010 (7)0.0171 (7)0.0014 (7)
C60.0500 (10)0.0413 (10)0.0728 (12)0.0085 (8)0.0316 (9)0.0024 (9)
C70.0801 (14)0.0556 (13)0.0687 (13)0.0182 (10)0.0313 (11)0.0113 (10)
C80.128 (2)0.0773 (19)0.1017 (19)0.0435 (18)0.0454 (17)0.0357 (16)
C90.147 (3)0.0582 (19)0.180 (4)0.0325 (19)0.075 (3)0.044 (2)
C100.116 (2)0.0432 (15)0.205 (4)0.0003 (15)0.052 (2)0.0068 (19)
C110.0755 (15)0.0451 (13)0.133 (2)0.0010 (11)0.0281 (14)0.0042 (13)
C120.0493 (9)0.0432 (10)0.0493 (10)0.0051 (8)0.0228 (8)0.0043 (8)
C130.0589 (11)0.0577 (12)0.0508 (10)0.0008 (9)0.0202 (9)0.0053 (9)
C140.0766 (14)0.0754 (15)0.0498 (11)0.0106 (12)0.0163 (10)0.0018 (10)
C150.1025 (17)0.0696 (15)0.0538 (12)0.0213 (13)0.0318 (12)0.0106 (11)
C160.0895 (15)0.0556 (13)0.0783 (15)0.0004 (11)0.0418 (13)0.0099 (11)
C170.0603 (11)0.0507 (11)0.0621 (11)0.0005 (9)0.0244 (9)0.0013 (9)
C180.0408 (9)0.0696 (13)0.0564 (11)0.0021 (9)0.0121 (8)0.0154 (10)
C190.060 (4)0.129 (7)0.253 (11)0.009 (4)0.084 (6)0.055 (7)
C19'0.067 (2)0.126 (4)0.074 (2)0.0404 (19)0.0303 (17)0.0150 (18)
C200.060 (4)0.129 (7)0.253 (11)0.009 (4)0.084 (6)0.055 (7)
C20'0.067 (2)0.126 (4)0.074 (2)0.0404 (19)0.0303 (17)0.0150 (18)
C210.0398 (8)0.0328 (8)0.0483 (9)0.0017 (6)0.0156 (7)0.0060 (7)
C220.0414 (9)0.0384 (9)0.0632 (11)0.0018 (7)0.0187 (8)0.0064 (8)
C230.0487 (10)0.0480 (10)0.0617 (11)0.0084 (8)0.0240 (9)0.0026 (9)
C240.0726 (13)0.0475 (12)0.0816 (14)0.0018 (10)0.0390 (11)0.0110 (10)
C250.0927 (16)0.0431 (11)0.0836 (15)0.0089 (11)0.0482 (13)0.0039 (11)
C260.142 (2)0.0591 (17)0.128 (2)0.0321 (17)0.062 (2)0.0240 (16)
C270.174 (3)0.0439 (16)0.161 (3)0.009 (2)0.101 (3)0.0040 (19)
C280.153 (3)0.0565 (17)0.150 (3)0.0250 (18)0.099 (2)0.0374 (18)
C290.1020 (18)0.0645 (15)0.1127 (19)0.0125 (13)0.0501 (15)0.0317 (14)
N10.0372 (7)0.0358 (7)0.0476 (8)0.0018 (6)0.0154 (6)0.0017 (6)
N20.0595 (9)0.0480 (10)0.0755 (11)0.0059 (8)0.0168 (8)0.0175 (8)
O10.0599 (8)0.0576 (8)0.0738 (9)0.0203 (6)0.0092 (7)0.0000 (7)
O20.0411 (7)0.0926 (11)0.0999 (11)0.0139 (7)0.0189 (7)0.0082 (9)
O30.0448 (7)0.0847 (10)0.0738 (9)0.0084 (7)0.0280 (6)0.0025 (8)
O40.0459 (6)0.0572 (8)0.0505 (7)0.0026 (5)0.0148 (5)0.0073 (6)
O50.0700 (9)0.0599 (9)0.0748 (9)0.0195 (7)0.0246 (7)0.0099 (7)
S10.0396 (2)0.0558 (3)0.0685 (3)0.0013 (2)0.0118 (2)0.0148 (2)
Geometric parameters (Å, º) top
C1—N11.476 (2)C18—O31.331 (2)
C1—C121.520 (2)C19—C201.44 (2)
C1—C21.521 (2)C19—O31.453 (3)
C1—H10.9800C19—H19A0.9700
C2—C31.484 (2)C19—H19B0.9700
C2—H2A0.9700C19'—C20'1.449 (9)
C2—H2B0.9700C19'—O31.453 (2)
C3—O11.3434 (19)C19'—H19C0.9700
C3—C41.344 (2)C19'—H19D0.9700
C4—C181.449 (2)C20—H20A0.9600
C4—C51.510 (2)C20—H20B0.9600
C5—N11.4807 (19)C20—H20C0.9600
C5—C61.527 (2)C20'—H20D0.9600
C5—H50.9800C20'—H20E0.9600
C6—C71.371 (3)C20'—H20F0.9600
C6—C111.380 (3)C21—O41.2226 (19)
C7—C81.386 (3)C21—N11.354 (2)
C7—H70.9300C21—C221.524 (2)
C8—C91.366 (4)C22—S11.7901 (17)
C8—H80.9300C22—H22A0.9700
C9—C101.364 (4)C22—H22B0.9700
C9—H90.9300C23—N21.277 (2)
C10—C111.381 (4)C23—O51.365 (2)
C10—H100.9300C23—S11.7271 (19)
C11—H110.9300C24—C251.357 (3)
C12—C131.386 (2)C24—C291.380 (3)
C12—C171.387 (2)C24—N21.403 (2)
C13—C141.377 (3)C25—C261.379 (3)
C13—H130.9300C25—O51.390 (3)
C14—C151.369 (3)C26—C271.374 (4)
C14—H140.9300C26—H260.9300
C15—C161.381 (3)C27—C281.363 (4)
C15—H150.9300C27—H270.9300
C16—C171.376 (3)C28—C291.381 (4)
C16—H160.9300C28—H280.9300
C17—H170.9300C29—H290.9300
C18—O21.229 (2)O1—H1A0.8200
N1—C1—C12112.22 (13)O2—C18—C4124.2 (2)
N1—C1—C2107.88 (13)O3—C18—C4113.17 (16)
C12—C1—C2115.83 (14)C20—C19—O3103.2 (10)
N1—C1—H1106.8C20—C19—H19A111.1
C12—C1—H1106.8O3—C19—H19A111.1
C2—C1—H1106.8C20—C19—H19B111.1
C3—C2—C1111.90 (14)O3—C19—H19B111.1
C3—C2—H2A109.2H19A—C19—H19B109.1
C1—C2—H2A109.2C20'—C19'—O3110.1 (4)
C3—C2—H2B109.2C20'—C19'—H19C109.6
C1—C2—H2B109.2O3—C19'—H19C109.6
H2A—C2—H2B107.9C20'—C19'—H19D109.6
O1—C3—C4123.92 (16)O3—C19'—H19D109.6
O1—C3—C2112.90 (15)H19C—C19'—H19D108.2
C4—C3—C2123.11 (15)C19'—C20'—H20D109.5
C3—C4—C18118.71 (16)C19'—C20'—H20E109.5
C3—C4—C5122.42 (14)H20D—C20'—H20E109.5
C18—C4—C5118.80 (16)C19'—C20'—H20F109.5
N1—C5—C4110.84 (13)H20D—C20'—H20F109.5
N1—C5—C6111.79 (13)H20E—C20'—H20F109.5
C4—C5—C6114.55 (13)O4—C21—N1122.46 (14)
N1—C5—H5106.4O4—C21—C22120.34 (14)
C4—C5—H5106.4N1—C21—C22117.19 (14)
C6—C5—H5106.4C21—C22—S1113.33 (12)
C7—C6—C11118.61 (19)C21—C22—H22A108.9
C7—C6—C5123.21 (17)S1—C22—H22A108.9
C11—C6—C5118.16 (18)C21—C22—H22B108.9
C6—C7—C8121.1 (2)S1—C22—H22B108.9
C6—C7—H7119.5H22A—C22—H22B107.7
C8—C7—H7119.5N2—C23—O5116.17 (16)
C9—C8—C7119.4 (3)N2—C23—S1128.87 (14)
C9—C8—H8120.3O5—C23—S1114.93 (13)
C7—C8—H8120.3C25—C24—C29119.9 (2)
C10—C9—C8120.3 (3)C25—C24—N2108.47 (18)
C10—C9—H9119.8C29—C24—N2131.7 (2)
C8—C9—H9119.8C24—C25—C26124.2 (2)
C9—C10—C11120.2 (3)C24—C25—O5108.52 (17)
C9—C10—H10119.9C26—C25—O5127.3 (2)
C11—C10—H10119.9C27—C26—C25114.7 (3)
C6—C11—C10120.4 (3)C27—C26—H26122.6
C6—C11—H11119.8C25—C26—H26122.6
C10—C11—H11119.8C28—C27—C26122.8 (3)
C13—C12—C17118.11 (17)C28—C27—H27118.6
C13—C12—C1122.93 (16)C26—C27—H27118.6
C17—C12—C1118.95 (15)C27—C28—C29121.1 (3)
C14—C13—C12121.07 (19)C27—C28—H28119.5
C14—C13—H13119.5C29—C28—H28119.5
C12—C13—H13119.5C24—C29—C28117.4 (3)
C15—C14—C13120.0 (2)C24—C29—H29121.3
C15—C14—H14120.0C28—C29—H29121.3
C13—C14—H14120.0C21—N1—C1124.39 (13)
C14—C15—C16119.9 (2)C21—N1—C5118.19 (13)
C14—C15—H15120.0C1—N1—C5116.91 (12)
C16—C15—H15120.0C23—N2—C24104.33 (17)
C17—C16—C15119.9 (2)C3—O1—H1A109.5
C17—C16—H16120.0C18—O3—C19'118.9 (5)
C15—C16—H16120.0C18—O3—C19115.3 (7)
C16—C17—C12120.89 (19)C19'—O3—C194.8 (9)
C16—C17—H17119.6C23—O5—C25102.52 (15)
C12—C17—H17119.6C23—S1—C2297.35 (8)
O2—C18—O3122.67 (17)
N1—C1—C2—C348.57 (18)C29—C24—C25—C261.5 (3)
C12—C1—C2—C378.14 (18)N2—C24—C25—C26179.3 (2)
C1—C2—C3—O1160.73 (14)C29—C24—C25—O5179.21 (19)
C1—C2—C3—C422.4 (2)N2—C24—C25—O50.0 (2)
O1—C3—C4—C181.2 (2)C24—C25—C26—C271.5 (4)
C2—C3—C4—C18175.36 (15)O5—C25—C26—C27179.4 (2)
O1—C3—C4—C5178.08 (15)C25—C26—C27—C280.1 (4)
C2—C3—C4—C51.5 (3)C26—C27—C28—C291.1 (5)
C3—C4—C5—N18.7 (2)C25—C24—C29—C280.2 (3)
C18—C4—C5—N1168.15 (13)N2—C24—C29—C28179.2 (2)
C3—C4—C5—C6118.88 (17)C27—C28—C29—C241.1 (4)
C18—C4—C5—C664.23 (19)O4—C21—N1—C1168.31 (15)
N1—C5—C6—C7106.37 (18)C22—C21—N1—C110.7 (2)
C4—C5—C6—C720.8 (2)O4—C21—N1—C53.2 (2)
N1—C5—C6—C1175.4 (2)C22—C21—N1—C5177.75 (13)
C4—C5—C6—C11157.43 (17)C12—C1—N1—C21120.16 (16)
C11—C6—C7—C81.0 (3)C2—C1—N1—C21111.06 (16)
C5—C6—C7—C8179.19 (19)C12—C1—N1—C568.23 (17)
C6—C7—C8—C90.6 (4)C2—C1—N1—C560.56 (17)
C7—C8—C9—C100.2 (5)C4—C5—N1—C21132.40 (14)
C8—C9—C10—C110.2 (5)C6—C5—N1—C2198.49 (17)
C7—C6—C11—C100.9 (3)C4—C5—N1—C139.75 (18)
C5—C6—C11—C10179.2 (2)C6—C5—N1—C189.36 (17)
C9—C10—C11—C60.5 (5)O5—C23—N2—C240.5 (2)
N1—C1—C12—C13120.99 (16)S1—C23—N2—C24177.45 (15)
C2—C1—C12—C133.5 (2)C25—C24—N2—C230.3 (2)
N1—C1—C12—C1760.14 (19)C29—C24—N2—C23178.8 (2)
C2—C1—C12—C17175.36 (15)O2—C18—O3—C19'9.8 (4)
C17—C12—C13—C140.4 (3)C4—C18—O3—C19'171.1 (3)
C1—C12—C13—C14179.27 (16)O2—C18—O3—C1913.3 (10)
C12—C13—C14—C151.2 (3)C4—C18—O3—C19167.7 (10)
C13—C14—C15—C160.7 (3)C20'—C19'—O3—C1893.0 (8)
C14—C15—C16—C170.5 (3)C20'—C19'—O3—C1952 (15)
C15—C16—C17—C121.3 (3)C20—C19—O3—C18151.2 (9)
C13—C12—C17—C160.9 (3)C20—C19—O3—C19'69 (15)
C1—C12—C17—C16178.06 (16)N2—C23—O5—C250.5 (2)
C3—C4—C18—O23.9 (3)S1—C23—O5—C25177.77 (13)
C5—C4—C18—O2179.06 (17)C24—C25—O5—C230.2 (2)
C3—C4—C18—O3175.12 (15)C26—C25—O5—C23179.5 (2)
C5—C4—C18—O31.9 (2)N2—C23—S1—C220.05 (19)
O4—C21—C22—S123.5 (2)O5—C23—S1—C22177.90 (13)
N1—C21—C22—S1157.47 (12)C21—C22—S1—C2368.22 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.842.558 (2)145
C13—H13···O2i0.932.593.263 (2)130
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC29H26N2O5S
Mr514.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.4630 (2), 24.3243 (5), 9.2350 (2)
β (°) 109.608 (1)
V3)2637.28 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.23 × 0.2 × 0.18
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
25589, 6571, 4020
Rint0.033
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.05
No. of reflections6571
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.821.842.558 (2)145
C13—H13···O2i0.932.593.263 (2)130
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This research work was supported by the second stage of the BK-21 program. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC&SAP) for financial support.

References

First citationAridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 2242–2249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAridoss, G., Sundaramoorthy, S., Velmurugan, D., Park, K. S. & Jeong, Y. T. (2010b). Acta Cryst. E66, o1982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds