

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[2-(1*H*-imidazol-2-yl- κN^3)-1*H*imidazol-3-ium]silver(I) trinitrate

Shelonda R. Finch,^a Johnathan P. Harper,^a Amitava Choudhury,^a Ekkehard Sinn^b and Harvest L. Collier^a*

^aChemistry Department, Missouri University of Science and Technology, Rolla MO 65409, USA, and ^bWestern Michigan University, Chemistry Department, 1903 West Michigan Avenue MS 5413, Kalamazoo MI 49008, USA Correspondence e-mail: hcollier@mst.edu

Received 31 March 2011; accepted 6 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.044; wR factor = 0.104; data-to-parameter ratio = 15.1.

The synthesis of the title salt, $[Ag(C_6H_7N_4)_2](NO_3)_3$, was carried out employing a 1:2 molar ratio of 2,2'-biimidazole and silver nitrate respectively. The cation has crystallographicallyimposed C2 symmetry with the metal atom in an almost linear coordination environment $[N-Ag-N = 177.01 (17)^{\circ}]$. The crystal structure displays N-H···O and C-H···O hydrogenbonding interactions.

Related literature

The synthesis of the complex is described by Hester et al. (1997). 2,2'-Biimidazole was prepared in a manner similar to Debus (1858).

V = 1979.3 (9) Å³

Mo $K\alpha$ radiation $\mu = 1.09 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

9412 measured reflections

2275 independent reflections

1723 reflections with $I > 2\sigma(I)$

Z = 4

T = 298 K

 $R_{\rm int} = 0.065$

Experimental

Crystal data

$[Ag(C_6H_7N_4)_2](NO_3)_3$	
$M_r = 564.21$	
Monoclinic, $C2/c$	
a = 24.095 (6) Å	
b = 12.037 (3) Å	
c = 6.8262 (18) Å	
$\beta = 91.319 \ (6)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.735, T_{\max} = 0.811$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	151 parameters
wR(F ²) = 0.104	H-atom parameters constrained
S = 0.99 2275 reflections	$\Delta \rho_{\text{max}} = 0.46 \text{ e } \text{A}^{-3}$ $\Delta \rho_{\text{min}} = -0.34 \text{ e } \text{Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

, , ,		<i>,</i>		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdots O4^{i}$	0.86	1.94	2.792 (4)	173
N3−H3···O1 ⁱⁱ	0.86	1.92	2.765 (4)	166
$N4-H4\cdots O4$	0.86	1.93	2.758 (4)	160
$C1 - H1 \cdots O3^{ii}$	0.93	2.49	3.179 (5)	131
$C2-H2 \cdot \cdot \cdot O5^{iii}$	0.93	2.60	3.331 (5)	136
$C5-H5\cdots O3^{iv}$	0.93	2.55	3.340 (6)	144
$C6-H6\cdots O2^{v}$	0.93	2.55	3.376 (6)	148

 $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1;$ (ii) Symmetry codes: (i) $x, -v + 1, z - \frac{1}{2}$ (iii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x, -y, z - \frac{1}{2}$; (v) x, y - 1, z.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2006).

References

Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA

Debus, H. (1858). Justus Liebigs Ann. Chem. 107, 199-208.

Hester, C. A., Collier, H. L. & Baughman, R. G. (1997). Polyhedron, 16, 2893-2895

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m909 [doi:10.1107/S1600536811021799]

Bis[2-(1*H*-imidazol-2-yl- κN^3)-1*H*-imidazol-3-ium]silver(I) trinitrate

Shelonda R. Finch, Johnathan P. Harper, Amitava Choudhury, Ekkehard Sinn and Harvest L. Collier

S1. Comment

The compound, silver bis (1*H*-imidazolium) trinitrate [Ag(biimH)₂(NO₃)₃] crystallizes in the monoclinic crystal system in space group *C2/c*. The Ag atom is coordinated to N atoms on two different 2,2'-biimidazole entities in an almost linear geometry where the biimidazole acts as a monodentate ligand. The Ag—N distance is 2.118 (3) Å and the N—Ag—N bond angle is 177.01 (17)°. There are one and one half crystallographically independent nitrate anions in the asymmetric unit (Figure 1). The nearest contacts of Ag with O atoms from one of the nitrate groups are in the range 3.026 (3)–3.070 (3) Å. The other nitrate is hydrogen-bonded to the other side of the uncoordinated ring of 2,2'-biimidazole (Figure 2). The two imidazole rings in 2,2'-biimidazole are no longer in one plane when coordinated to Ag as in [Ag(biimH)₂(NO₃)₃] but are twisted with a N1—C3—C4—N4 torsion angle of 33.5 (6)°. A very similar torsion angle [34.30 (7)°] has been observed in another silver complex of 2,2'-biimidazole (Hester *et al.* (1997)) where such a torsion angle between the imidazole complex reported by Hester the biimidazole binds to Ag atoms in a bis-monodentate fashion bridging two Ag atoms with a very close Ag—Ag contact distance of 3.003 (3)Å and an N—Ag—N bond angle of 162.36 (2)°. This contrasts with the nearest Ag—Ag contact distance in the present complex which is considerably greater at 3.5473 (9) Å.

S2. Experimental

2,2'-Biimidazole was prepared in a manner similar to Debus (1858), using equal portions of 40% glyoxal and concentrated ammonium hydroxide (28–30%). Silver nitrate was used as received and concentrated nitric acid was diluted to 0.1 *M*. The synthesis of silver bis(1*H*-imidazolium) trinitrate used a procedure similar to that reported by Hester *et al.* (1997), using 0.1 *M* HNO₃. A mass of 1.343 g (1.001 \times 10⁻² mol) of 2,2'-biimidazole was dissolved in 15 ml of 0.1*M* HNO₃ using heat. Silver nitrate (3.410 g, 2.007 \times 10⁻² mol) was then added to the solution as a solid. A precipitate formed upon mixing and a few drops of 0.1 *M* HNO₃ were added to resolubilize the precipitate. Colourless crystals formed as the solution was allowed to slowly evaporate.

S3. Refinement

Hydrogen atoms were placed geometrically and held in the riding mode during the final refinement. C—H = 0.93 Å with Uiso (H) = 1.2Ueq(C) and N—H = 0.86 Å with Uiso (H) = 1.2Ueq(N).

Figure 1

Asymmetric unit of silver bis(1*H*-imidazolium) trinitrate. Thermal ellipsoids are drawn at the 40% probability level.

Figure 2

Unit cell packing of silver bis(1*H*-imidazolium) trinitrate shown along the *c*-axis. Dotted lines indicate N—H···O and C—H···O hydrogen-bonding interactions.

Bis[2-(1*H*-imidazol-2-yl-κN³)-1*H*-imidazol-3-ium]silver(I) trinitrate

Crystal data

[Ag(C₆H₇N₄)₂](NO₃)₃ $M_r = 564.21$ Monoclinic, C2/c Hall symbol: -C 2yc a = 24.095 (6) Å b = 12.037 (3) Å c = 6.8262 (18) Å $\beta = 91.319$ (6)° V = 1979.3 (9) Å³ Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.735, T_{\max} = 0.811$ F(000) = 1128 $D_x = 1.893 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2422 reflections $\theta = 3.1-24.0^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 298 KNeedle, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$

9412 measured reflections 2275 independent reflections 1723 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -31 \rightarrow 31$ $k = -15 \rightarrow 15$ $l = -8 \rightarrow 8$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.104$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
S = 0.99	H-atom parameters constrained
2275 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0505P)^2]$
151 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Agl	0.5000	0.45986 (4)	0.2500	0.04700 (17)
N1	0.58789 (12)	0.4553 (3)	0.2547 (4)	0.0405 (7)
C1	0.61871 (16)	0.5520 (3)	0.2559 (6)	0.0459 (9)
H1	0.6044	0.6235	0.2442	0.055*
C2	0.67332 (17)	0.5259 (3)	0.2768 (6)	0.0510 (10)
H2	0.7029	0.5755	0.2832	0.061*
N2	0.67642 (13)	0.4139 (3)	0.2867 (5)	0.0468 (8)
H2N	0.7063	0.3753	0.2994	0.056*
C3	0.62405 (14)	0.3734 (3)	0.2730 (5)	0.0379 (8)
C4	0.61183 (14)	0.2557 (3)	0.2817 (5)	0.0378 (8)
N3	0.57064 (13)	0.2026 (3)	0.1904 (5)	0.0440 (8)
H3	0.5456	0.2331	0.1165	0.053*
C6	0.57421 (18)	0.0915 (3)	0.2320 (6)	0.0527 (10)
H6	0.5506	0.0358	0.1856	0.063*
C5	0.6184 (2)	0.0791 (4)	0.3527 (7)	0.0590 (12)
Н5	0.6310	0.0126	0.4068	0.071*
N4	0.64157 (14)	0.1813 (3)	0.3822 (5)	0.0487 (8)
H4	0.6706	0.1952	0.4538	0.058*
01	0.50331 (14)	0.6989 (3)	0.4067 (5)	0.0721 (10)
N5	0.5000	0.7527 (5)	0.2500	0.0511 (12)
O2	0.5000	0.8540 (4)	0.2500	0.0879 (16)
O3	0.64511 (13)	0.1930 (3)	0.8363 (5)	0.0738 (10)
N6	0.69447 (15)	0.1706 (3)	0.8314 (6)	0.0541 (9)
O4	0.72151 (11)	0.1948 (3)	0.6770 (4)	0.0579 (8)
05	0.71807 (15)	0.1225 (4)	0.9651 (5)	0.0968 (13)

supporting information

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Agl	0.0336 (2)	0.0475 (3)	0.0597 (3)	0.000	-0.00185 (17)	0.000
N1	0.0385 (16)	0.0417 (17)	0.0412 (17)	-0.0022 (14)	-0.0010 (13)	0.0016 (14)
C1	0.047 (2)	0.042 (2)	0.049 (2)	-0.0031 (17)	0.0005 (17)	-0.0007 (18)
C2	0.048 (2)	0.053 (3)	0.052 (2)	-0.0141 (19)	-0.0009 (18)	0.002 (2)
N2	0.0330 (16)	0.056 (2)	0.051 (2)	-0.0003 (14)	-0.0034 (14)	0.0038 (16)
C3	0.0326 (17)	0.045 (2)	0.0365 (19)	0.0007 (15)	-0.0030 (14)	-0.0024 (16)
C4	0.0351 (18)	0.042 (2)	0.036 (2)	0.0031 (15)	0.0022 (15)	0.0011 (16)
N3	0.0427 (18)	0.0475 (19)	0.0416 (18)	-0.0023 (14)	-0.0009 (14)	-0.0004 (14)
C6	0.061 (3)	0.042 (2)	0.056 (3)	-0.006(2)	0.016 (2)	-0.007(2)
C5	0.071 (3)	0.041 (2)	0.066 (3)	0.008 (2)	0.012 (2)	0.007 (2)
N4	0.0499 (19)	0.049 (2)	0.047 (2)	0.0066 (15)	-0.0035 (15)	0.0055 (16)
01	0.090 (2)	0.073 (2)	0.0526 (19)	-0.0163 (19)	-0.0198 (17)	0.0118 (16)
N5	0.047 (3)	0.052 (3)	0.054 (3)	0.000	-0.005 (2)	0.000
O2	0.095 (4)	0.046 (3)	0.122 (5)	0.000	-0.009 (3)	0.000
O3	0.053 (2)	0.078 (2)	0.091 (3)	0.0165 (17)	0.0225 (17)	0.0085 (19)
N6	0.049 (2)	0.054 (2)	0.059 (2)	0.0017 (17)	0.0028 (18)	0.0014 (18)
O4	0.0448 (16)	0.076 (2)	0.0532 (18)	0.0034 (14)	0.0059 (13)	0.0107 (15)
O5	0.074 (2)	0.149 (4)	0.067 (2)	0.007 (3)	-0.0109 (19)	0.039 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

2.118 (3)	N3—C6	1.370 (5)
2.118 (3)	N3—H3	0.8600
1.319 (4)	C6—C5	1.340 (6)
1.381 (5)	С6—Н6	0.9300
1.357 (6)	C5—N4	1.365 (5)
0.9300	С5—Н5	0.9300
1.351 (5)	N4—H4	0.8600
0.9300	O1—N5	1.251 (4)
1.354 (5)	N5—O2	1.220 (7)
0.8600	N5—O1 ⁱ	1.251 (4)
1.449 (5)	O3—N6	1.221 (4)
1.324 (5)	N6—O5	1.211 (5)
1.328 (5)	N6—O4	1.285 (4)
177.01 (17)	C4—N3—C6	109.3 (3)
106.0 (3)	C4—N3—H3	125.3
132.8 (2)	C6—N3—H3	125.3
121.0 (2)	C5—C6—N3	106.4 (4)
109.0 (4)	С5—С6—Н6	126.8
125.5	N3—C6—H6	126.8
125.5	C6C5N4	107.8 (4)
106.8 (4)	С6—С5—Н5	126.1
126.6	N4—C5—H5	126.1
126.6	C4—N4—C5	108.6 (3)
	$\begin{array}{c} 2.118 (3) \\ 2.118 (3) \\ 1.319 (4) \\ 1.381 (5) \\ 1.357 (6) \\ 0.9300 \\ 1.351 (5) \\ 0.9300 \\ 1.354 (5) \\ 0.8600 \\ 1.449 (5) \\ 1.324 (5) \\ 1.328 (5) \\ \end{array}$ $\begin{array}{c} 177.01 (17) \\ 106.0 (3) \\ 132.8 (2) \\ 121.0 (2) \\ 109.0 (4) \\ 125.5 \\ 125.5 \\ 106.8 (4) \\ 126.6 \\ 126.6 \\ 126.6 \\ \end{array}$	2.118 (3) N3-C6 2.118 (3) N3-H3 1.319 (4) C6-C5 1.381 (5) C6-H6 1.357 (6) C5-N4 0.9300 C5-H5 1.351 (5) N4-H4 0.9300 O1-N5 1.354 (5) N5-O2 0.8600 N5-O1 ⁱ 1.449 (5) O3-N6 1.324 (5) N6-O5 1.328 (5) N6-O4 177.01 (17) C4-N3-C6 106.0 (3) C4-N3-H3 121.0 (2) C5-C6-N3 109.0 (4) C5-C6-H6 125.5 N3-C6-H6 125.5 C6-C5-H5 126.6 N4-C5-H5 126.6 C4-N4-C5

C2—N2—C3	107.8 (3)	C4—N4—H4	125.7
C2—N2—H2N	126.1	C5—N4—H4	125.7
C3—N2—H2N	126.1	O2-N5-O1 ⁱ	121.2 (3)
N1—C3—N2	110.5 (3)	O2—N5—O1	121.2 (3)
N1—C3—C4	126.9 (3)	O1 ⁱ —N5—O1	117.6 (5)
N2—C3—C4	122.6 (3)	O5—N6—O3	121.7 (4)
N3—C4—N4	107.9 (3)	O5—N6—O4	119.2 (4)
N3—C4—C3	127.1 (3)	O3—N6—O4	119.0 (4)
N4—C4—C3	125.0 (3)		
C3—N1—C1—C2	-0.5 (4)	N2-C3-C4-N3	-147.8 (4)
Ag1—N1—C1—C2	174.5 (3)	N1-C3-C4-N4	-148.0 (4)
N1-C1-C2-N2	0.6 (5)	N2-C3-C4-N4	30.8 (6)
C1—C2—N2—C3	-0.4 (4)	N4—C4—N3—C6	-0.4 (4)
C1—N1—C3—N2	0.3 (4)	C3—C4—N3—C6	178.3 (4)
Ag1—N1—C3—N2	-173.9 (2)	C4—N3—C6—C5	0.6 (5)
C1—N1—C3—C4	179.2 (4)	N3—C6—C5—N4	-0.6 (5)
Ag1—N1—C3—C4	5.0 (6)	N3-C4-N4-C5	0.0 (4)
C2—N2—C3—N1	0.0 (4)	C3—C4—N4—C5	-178.7 (4)
C2—N2—C3—C4	-178.9 (3)	C6—C5—N4—C4	0.3 (5)
N1—C3—C4—N3	33.5 (6)		

Symmetry code: (i) -x+1, *y*, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
N2—H2 <i>N</i> ···O4 ⁱⁱ	0.86	1.94	2.792 (4)	173
N3—H3···O1 ⁱⁱⁱ	0.86	1.92	2.765 (4)	166
N4—H4···O4	0.86	1.93	2.758 (4)	160
C1—H1···O3 ⁱⁱⁱ	0.93	2.49	3.179 (5)	131
C2—H2···O5 ^{iv}	0.93	2.60	3.331 (5)	136
С5—Н5…О3 ^v	0.93	2.55	3.340 (6)	144
C6—H6····O2 ^{vi}	0.93	2.55	3.376 (6)	148

Symmetry codes: (ii) -x+3/2, -y+1/2, -z+1; (iii) x, -y+1, z-1/2; (iv) -x+3/2, y+1/2, -z+3/2; (v) x, -y, z-1/2; (vi) x, y-1, z.