organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1588-o1589

Methyl 2-benzyl-4-hy­dr­oxy-1,1-dioxo-1,2,3,4-tetra­hydro-1λ6,2-benzo­thia­zine-3-carboxyl­ate

aX-ray Diffraction and Crystallography Laboratory, Department of Physics, School of Physical Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan, bMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, cApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and dThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah, PO Box 80203, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com

(Received 25 May 2011; accepted 27 May 2011; online 4 June 2011)

In the title compound, C17H15NO5S, the benzene ring of the fused-ring system is twisted by 11.67 (6)° with respect to the thia­zine ring. The atoms of the four-atom methyl ester group and the phenyl ring of the benzyl unit are inclined at 16.50 (7) and 44.52 (3)° with respect to the thia­zine ring. An intra­molecular O—H⋯O hydrogen bond gives rise to a six-membered S(6) ring motif. In the crystal, mol­ecules are extended through a C—H⋯O inter­action along the a axis. C—H⋯π inter­actions are also observed.

Related literature

For the biological properties of benzothia­zines, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Kor. Chem. Soc. 26, 1771-1775.], 2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For a related structure, see: Arshad et al. (2009[Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO5S

  • Mr = 345.36

  • Monoclinic, P 21 /c

  • a = 9.4920 (15) Å

  • b = 10.9607 (17) Å

  • c = 15.050 (2) Å

  • β = 99.758 (2)°

  • V = 1543.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.43 × 0.25 × 0.19 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.956

  • 13430 measured reflections

  • 3719 independent reflections

  • 3297 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.06

  • 3719 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.95 2.49 3.1861 (19) 130
O1—H1O⋯O4 0.93 (2) 1.72 (2) 2.5580 (15) 149 (2)
C10—H10BCg1ii 0.80 2.94 3.6391 (18) 130
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: X-SEED (Barbour, 2001)[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.], WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Crystallographic and biological studies of benzothiazine molecules and their derivatives gained much attraction in recent literature (Zia-ur-Rehman et al. 2005, 2006) and (Arshad et al. 2009).

The title compound is N-alkylated derivative of methyl -4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide. The methyl ester moiety attached to the thiazine ring is almost planer showing the r. m. s. deviation of 0.0087Å and is oriented at dihedral angle of 16.50 (7)° with respect to the thiazine ring. The typical intramolecular O–H···O interaction of 4-hydroxy benzothiazine molecules observed and generates almost planer six membered ring motif S11(6)(Bernstein, et al., 1995) with the r.m.s deviaton of 0.0085Å and produces dihedral angles of 16.02 (33)° & 15.87 (32)° with respect to the thiazine and aromatic (C1/C2/C3/C4/C5/C6) rings respectively. The thiazine ring adopted the half chair shaped as the S1 and N1 showed maximum deviation from the least square plane measure 0.3113 (7)Å and 0.3082 (8)Å respectively and root mean square deviation for the ring is 0.2031Å. A weak intermolecular hydrogen bonding interaction observed along the a axes (Fig.2. Tab.1). Further hydrogen atom from methyl group of ester moiety involved in symmetry related C—H···.π interaction [C10—H10B···.Cg1, where Cg1 is centroid of (C1—C6)] table 1. The benzyl ring attached to nitogen atom of thiazine ring is oriented at dihedral angle of 51.33 (3)° and 44.52 (3)° with respect to the aromatic (C1—C6) and thiazine rings respectively.

Related literature top

For the biological properties of benzothiazines, see: Zia-ur-Rehman et al. (2005, 2006). For a related structure, see: Arshad et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (350 mg, 1.37 mmol), sodium hydride (77 mg, 3.2 mmol) and dimethylformamide (5 ml) was prperaed in a round bottom flask. Benzyl Chloride (202 mg, 1.6 mmol) was added drop wise to the above mixture. Contents were allowed to stirr at room temperature for 5 h under nitrogen atmosphere and poured over ice cooled water (100 ml). The pH was adjusted 2-3 using 1N HCL which yielded precipetates . The precipitates were filtered, washed with cold water and dried. Single crystals were obtained by re-crystallization from a methanol solution under slow evaporation.

Refinement top

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93000 Å for aromatic, C—H = 0.96000 Å for methylene, C—H = 0.97000 Å for methyl and were refined using a riding model with Uiso(H) = 1.2 Ueqfor aromatic C atoms. The O—H H-atom was located via fourier map with O—H = 0.93 (2) Å with Uiso(H) = 1.5 Ueqfor O atom. The three reflection -6 2 1, 9 0 2 and -7 1 2 were omitted in final refinement as these were highly obscured by beamstop.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled diagram of (I) with thermal ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I) showinh the inter and intramolecular hydrogen bondings using dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Methyl 2-benzyl-4-hydroxy-1,1-dioxo-1,2,3,4-tetrahydro-1λ6,2- benzothiazine-3-carboxylate top
Crystal data top
C17H15NO5SF(000) = 720
Mr = 345.36Dx = 1.487 Mg m3
Monoclinic, P21/cMelting point: 422 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.4920 (15) ÅCell parameters from 6007 reflections
b = 10.9607 (17) Åθ = 2.3–28.3°
c = 15.050 (2) ŵ = 0.24 mm1
β = 99.758 (2)°T = 173 K
V = 1543.1 (4) Å3Block, colorless
Z = 40.43 × 0.25 × 0.19 mm
Data collection top
Bruker SMART 1K
diffractometer
3719 independent reflections
Radiation source: fine-focus sealed tube3297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.905, Tmax = 0.956k = 1414
13430 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.6338P]
where P = (Fo2 + 2Fc2)/3
3719 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C17H15NO5SV = 1543.1 (4) Å3
Mr = 345.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4920 (15) ŵ = 0.24 mm1
b = 10.9607 (17) ÅT = 173 K
c = 15.050 (2) Å0.43 × 0.25 × 0.19 mm
β = 99.758 (2)°
Data collection top
Bruker SMART 1K
diffractometer
3719 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3297 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.956Rint = 0.033
13430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.79 e Å3
3719 reflectionsΔρmin = 0.57 e Å3
221 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81488 (4)0.52594 (3)0.28570 (2)0.01595 (12)
O40.30241 (11)0.50771 (10)0.17813 (7)0.0183 (2)
C10.83777 (15)0.56206 (13)0.17521 (10)0.0157 (3)
O10.46409 (11)0.60454 (10)0.07788 (7)0.0187 (2)
C20.97337 (16)0.58108 (14)0.15447 (10)0.0188 (3)
H21.05650.56660.19810.023*
O50.40378 (11)0.40446 (10)0.30203 (7)0.0177 (2)
C30.98459 (17)0.62175 (14)0.06835 (11)0.0209 (3)
H31.07630.63510.05290.025*
O20.93353 (11)0.45544 (11)0.33020 (7)0.0220 (3)
C40.86248 (17)0.64307 (14)0.00470 (10)0.0204 (3)
H40.87150.67260.05340.025*
O30.77720 (12)0.63674 (10)0.32661 (7)0.0211 (2)
C50.72758 (16)0.62151 (13)0.02546 (10)0.0176 (3)
H50.64480.63530.01850.021*
N10.67339 (13)0.43784 (11)0.26853 (8)0.0156 (3)
C60.71401 (15)0.57923 (13)0.11162 (10)0.0152 (3)
C70.57231 (15)0.55402 (13)0.13462 (10)0.0153 (3)
C80.55400 (15)0.48728 (13)0.20867 (10)0.0150 (3)
C90.40936 (16)0.46801 (13)0.22778 (10)0.0154 (3)
C110.69172 (16)0.30226 (13)0.26997 (10)0.0169 (3)
H11A0.61250.26510.29570.020*
H11B0.78210.28180.31050.020*
C120.69472 (16)0.24606 (13)0.17890 (10)0.0165 (3)
C130.56919 (17)0.20116 (14)0.12780 (11)0.0212 (3)
H130.48160.20810.15000.025*
C140.5710 (2)0.14639 (16)0.04476 (12)0.0307 (4)
H140.48480.11680.01010.037*
C150.6992 (2)0.13497 (16)0.01245 (12)0.0340 (4)
H150.70070.09700.04410.041*
C160.8247 (2)0.17886 (16)0.06271 (12)0.0308 (4)
H160.91230.17030.04080.037*
C100.26012 (16)0.38959 (15)0.32309 (11)0.0199 (3)
H10A0.21840.47000.33030.030*
H10B0.26520.34310.37920.030*
H10C0.20030.34560.27390.030*
C170.82300 (18)0.23540 (14)0.14515 (11)0.0225 (3)
H170.90910.26690.17870.027*
H1O0.381 (3)0.583 (2)0.0989 (14)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01167 (19)0.0206 (2)0.0152 (2)0.00077 (12)0.00123 (13)0.00070 (13)
O40.0117 (5)0.0229 (5)0.0201 (5)0.0010 (4)0.0018 (4)0.0008 (4)
C10.0153 (7)0.0163 (7)0.0155 (7)0.0000 (5)0.0030 (5)0.0000 (5)
O10.0134 (5)0.0227 (6)0.0193 (5)0.0025 (4)0.0007 (4)0.0035 (4)
C20.0148 (7)0.0206 (7)0.0210 (7)0.0001 (5)0.0030 (5)0.0004 (6)
O50.0134 (5)0.0198 (5)0.0207 (5)0.0004 (4)0.0051 (4)0.0023 (4)
C30.0174 (7)0.0230 (8)0.0240 (8)0.0024 (6)0.0085 (6)0.0010 (6)
O20.0121 (5)0.0308 (6)0.0219 (6)0.0010 (4)0.0002 (4)0.0060 (4)
C40.0236 (8)0.0207 (7)0.0181 (7)0.0009 (6)0.0066 (6)0.0007 (6)
O30.0199 (5)0.0238 (6)0.0196 (5)0.0038 (4)0.0033 (4)0.0037 (4)
C50.0175 (7)0.0179 (7)0.0169 (7)0.0004 (5)0.0015 (5)0.0009 (5)
N10.0122 (6)0.0165 (6)0.0178 (6)0.0004 (4)0.0018 (5)0.0015 (5)
C60.0147 (7)0.0142 (7)0.0169 (7)0.0005 (5)0.0030 (5)0.0012 (5)
C70.0136 (7)0.0152 (6)0.0169 (7)0.0013 (5)0.0018 (5)0.0021 (5)
C80.0119 (7)0.0149 (7)0.0176 (7)0.0016 (5)0.0010 (5)0.0008 (5)
C90.0153 (7)0.0137 (7)0.0172 (7)0.0004 (5)0.0028 (5)0.0028 (5)
C110.0161 (7)0.0174 (7)0.0173 (7)0.0025 (5)0.0028 (5)0.0033 (5)
C120.0178 (7)0.0134 (7)0.0186 (7)0.0017 (5)0.0039 (5)0.0031 (5)
C130.0195 (7)0.0174 (7)0.0250 (8)0.0022 (6)0.0012 (6)0.0029 (6)
C140.0420 (10)0.0189 (8)0.0259 (8)0.0036 (7)0.0092 (7)0.0020 (6)
C150.0651 (13)0.0198 (8)0.0181 (8)0.0076 (8)0.0103 (8)0.0023 (6)
C160.0448 (11)0.0209 (8)0.0330 (9)0.0054 (7)0.0244 (8)0.0064 (7)
C100.0140 (7)0.0219 (8)0.0249 (8)0.0017 (5)0.0066 (6)0.0006 (6)
C170.0228 (8)0.0185 (7)0.0286 (8)0.0006 (6)0.0110 (6)0.0033 (6)
Geometric parameters (Å, º) top
S1—O31.4341 (12)C6—C71.471 (2)
S1—O21.4347 (11)C7—C81.369 (2)
S1—N11.6387 (13)C8—C91.465 (2)
S1—C11.7583 (15)C11—C121.507 (2)
O4—C91.2333 (18)C11—H11A0.9900
C1—C21.391 (2)C11—H11B0.9900
C1—C61.397 (2)C12—C131.394 (2)
O1—C71.3393 (17)C12—C171.401 (2)
O1—H1O0.93 (2)C13—C141.389 (2)
C2—C31.392 (2)C13—H130.9500
C2—H20.9500C14—C151.391 (3)
O5—C91.3254 (18)C14—H140.9500
O5—C101.4606 (17)C15—C161.384 (3)
C3—C41.393 (2)C15—H150.9500
C3—H30.9500C16—C171.389 (2)
C4—C51.389 (2)C16—H160.9500
C4—H40.9500C10—H10A0.9800
C5—C61.403 (2)C10—H10B0.9800
C5—H50.9500C10—H10C0.9800
N1—C81.4295 (18)C17—H170.9500
N1—C111.4959 (19)
O3—S1—O2119.27 (7)N1—C8—C9119.40 (13)
O3—S1—N1108.02 (6)O4—C9—O5123.35 (13)
O2—S1—N1108.29 (7)O4—C9—C8122.20 (13)
O3—S1—C1107.16 (7)O5—C9—C8114.46 (13)
O2—S1—C1110.47 (7)N1—C11—C12114.38 (12)
N1—S1—C1102.29 (7)N1—C11—H11A108.7
C2—C1—C6121.94 (13)C12—C11—H11A108.7
C2—C1—S1120.90 (11)N1—C11—H11B108.7
C6—C1—S1117.00 (11)C12—C11—H11B108.7
C7—O1—H1O106.1 (14)H11A—C11—H11B107.6
C1—C2—C3118.48 (14)C13—C12—C17118.98 (14)
C1—C2—H2120.8C13—C12—C11119.99 (13)
C3—C2—H2120.8C17—C12—C11121.01 (14)
C9—O5—C10114.45 (11)C14—C13—C12120.60 (15)
C2—C3—C4120.55 (14)C14—C13—H13119.7
C2—C3—H3119.7C12—C13—H13119.7
C4—C3—H3119.7C13—C14—C15119.92 (17)
C5—C4—C3120.55 (14)C13—C14—H14120.0
C5—C4—H4119.7C15—C14—H14120.0
C3—C4—H4119.7C16—C15—C14120.03 (16)
C4—C5—C6119.77 (14)C16—C15—H15120.0
C4—C5—H5120.1C14—C15—H15120.0
C6—C5—H5120.1C15—C16—C17120.24 (16)
C8—N1—C11117.62 (11)C15—C16—H16119.9
C8—N1—S1114.65 (10)C17—C16—H16119.9
C11—N1—S1119.53 (10)O5—C10—H10A109.5
C1—C6—C5118.65 (13)O5—C10—H10B109.5
C1—C6—C7120.66 (13)H10A—C10—H10B109.5
C5—C6—C7120.68 (13)O5—C10—H10C109.5
O1—C7—C8123.41 (13)H10A—C10—H10C109.5
O1—C7—C6113.92 (12)H10B—C10—H10C109.5
C8—C7—C6122.65 (13)C16—C17—C12120.22 (16)
C7—C8—N1121.28 (13)C16—C17—H17119.9
C7—C8—C9119.31 (13)C12—C17—H17119.9
O3—S1—C1—C298.81 (13)O1—C7—C8—N1178.36 (13)
O2—S1—C1—C232.60 (15)C6—C7—C8—N10.0 (2)
N1—S1—C1—C2147.69 (13)O1—C7—C8—C90.5 (2)
O3—S1—C1—C676.69 (13)C6—C7—C8—C9178.95 (13)
O2—S1—C1—C6151.90 (11)C11—N1—C8—C7111.02 (15)
N1—S1—C1—C636.80 (13)S1—N1—C8—C737.42 (17)
C6—C1—C2—C31.9 (2)C11—N1—C8—C970.08 (17)
S1—C1—C2—C3173.42 (11)S1—N1—C8—C9141.49 (11)
C1—C2—C3—C40.1 (2)C10—O5—C9—O42.7 (2)
C2—C3—C4—C51.4 (2)C10—O5—C9—C8177.58 (12)
C3—C4—C5—C60.7 (2)C7—C8—C9—O41.7 (2)
O3—S1—N1—C861.81 (11)N1—C8—C9—O4179.41 (13)
O2—S1—N1—C8167.73 (10)C7—C8—C9—O5178.62 (13)
C1—S1—N1—C851.05 (11)N1—C8—C9—O50.31 (19)
O3—S1—N1—C11150.40 (10)C8—N1—C11—C1254.00 (17)
O2—S1—N1—C1119.94 (13)S1—N1—C11—C1292.85 (14)
C1—S1—N1—C1196.74 (11)N1—C11—C12—C1393.63 (16)
C2—C1—C6—C52.5 (2)N1—C11—C12—C1787.87 (17)
S1—C1—C6—C5172.92 (11)C17—C12—C13—C140.1 (2)
C2—C1—C6—C7177.73 (14)C11—C12—C13—C14178.38 (14)
S1—C1—C6—C76.82 (19)C12—C13—C14—C150.6 (2)
C4—C5—C6—C11.2 (2)C13—C14—C15—C160.4 (3)
C4—C5—C6—C7179.06 (14)C14—C15—C16—C170.6 (3)
C1—C6—C7—O1162.79 (13)C15—C16—C17—C121.4 (2)
C5—C6—C7—O116.94 (19)C13—C12—C17—C161.2 (2)
C1—C6—C7—C815.8 (2)C11—C12—C17—C16177.36 (14)
C5—C6—C7—C8164.52 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.493.1861 (19)130
O1—H1O···O40.93 (2)1.72 (2)2.5580 (15)149 (2)
C10—H10B···Cg1ii0.802.943.6391 (18)130
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15NO5S
Mr345.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.4920 (15), 10.9607 (17), 15.050 (2)
β (°) 99.758 (2)
V3)1543.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.43 × 0.25 × 0.19
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.905, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
13430, 3719, 3297
Rint0.033
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.06
No. of reflections3719
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.57

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.952.493.1861 (19)130
O1—H1O···O40.93 (2)1.72 (2)2.5580 (15)149 (2)
C10—H10B···Cg1ii0.80172.943.6391 (18)130
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Current address: Materials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan.

Acknowledgements

MNA acknowledges the HEC for providing a Fellowship under the Inter­national Research Support Initiative Program (IRSIP)

References

First citationArshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009). Acta Cryst. E65, o3077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Kor. Chem. Soc. 26, 1771–1775.  CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1588-o1589
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds