Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[6]Cyclo-2,7-naphthylene: a redetermination

Waka Nakanishi, Jing Yang Xue, Tomoaki Yoshioka and Hiroyuki Isobe*

Department of Chemistry, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan Correspondence e-mail: isobe@m.tohoku.ac.jp

Received 31 May 2011; accepted 16 June 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.066 ; w R$ factor $=0.181$; data-to-parameter ratio $=16.1$.

Single crystals of a macrocyclic hydrocarbon, [6]cyclo-2,7naphthylene ([6]CNAP, $\mathrm{C}_{60} \mathrm{H}_{36}$) were prepared from anthracene melt with a prolonged time for the recrystallization. The crystal of improved quality led to the correction of the spacegroup assignment to Cmca from $P \overline{1}$ in the original determination [Nakanishi et al. (2011) Angew. Chem. Int. Ed. 50, 53235326] and the refinement of anisotropic displacement parameters of all C atoms. The refined molecular structure with $C_{2 h}$ point symmetry indicated that the strain on the naphthyl rings of [6]CNAP is smallest among the congeners. Despite the large macrocyclic structure, molecules are packed in a ubiquitous herringbone motif. A short $\mathrm{C}-\mathrm{C}$ distance of 3.119 (4) \AA was found in the stacking direction, and a short $\mathrm{C}-\mathrm{H}$ distance of $2.80 \AA$ was found in the intercolumnar contact.

Related literature

Superior quality crystals of the title compound were obtained by re-optimizing the crystallization conditions. For the synthesis and preceding crystallographic analysis, see: Nakanishi et al. (2011). For the original method of recrystallization, see: Miyahara \& Shimizu (2001). For a review of $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts in crystals, see: Nishio (2004).

Experimental

Crystal data
$\mathrm{C}_{60} \mathrm{H}_{36}$
$M_{r}=756.89$
Orthorhombic, Cmca
$a=34.224$ (6) A
$b=7.4629$ (14) \AA
$c=15.131$ (3) \AA
$V=3864.7(12) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.40 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.686, T_{\text {max }}=0.996$
20522 measured reflections 2234 independent reflections 1667 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066 \quad 139$ parameters
$w R\left(F^{2}\right)=0.181 \quad \mathrm{H}$-atom parameters constrained
$S=1.06$
2234 reflections
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

This study was partly supported by KAKENHI (21685005, 20108015 to HI and 22550094 to WN). We thank Professor T. Iwamoto for the use of the X-ray instrument.

[^0]
organic compounds

References

Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kabuto, C., Akine, S., Nemoto, T. \& Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Miyahara, T. \& Shimizu, M. (2001). J. Cryst. Growth, 229, 553-557.
Nakanishi, W., Yoshioka, T., Taka, H., Xue, J. Y., Kita, H. \& Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 5323-5326.
Nishio, M. (2004). CrystEngComm, 6, 130-158.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2011). E67, o1762-o1763 [doi:10.1107/S1600536811023427]

[6]Cyclo-2,7-naphthylene: a redetermination

Waka Nakanishi, Jing Yang Xue, Tomoaki Yoshioka and Hiroyuki Isobe

S1. Comment

Polycyclic aromatic hydrocarbons are important compounds for the development of organic electronics. As new bipolar carrier transport materials for organic light emitting diodes, we recently reported [n]cyclo-2,7-naphthylenes ([n]CNAP; Nakanishi et al., 2011). The unique macrocyclic structures of $[n]$ CNAPs $(n=5,6$ and 7$)$ were revealed by X-ray crystallographic analysis of the single crystals, but we deferred detailed discussion of the most abundant compounds, [6]CNAP, because of insufficient quality of available data mainly due to weak reflections from the previous crystals. We now obtained single crystals of [6]CNAP with superior quality by re-optimizing the crystallization conditions and successfully corrected the space group assignment to Cmca. The molecular structure of title compound is shown in Fig. 1, and the packing structure is shown in Fig. 2. Most importantly, the refined molecular structure with $C_{2 h}$ point symmetry shows that [6]CNAP has the smallest deformation in the planar naphthyl rings with the average bend angle of 2.3° which is smaller than 16° and 5° of [5]- and [7]CNAPs, respectively. To form the strain-free macrocycle, the naphthyl rings are twisted alternately with dihedral angles of $33.1(3)^{\circ}$ and $25.6(4)^{\circ}$. Despite the large macrocyclic structure, molecules are packed in a ubiquitous herringbone motif. A short C-C distance of 3.119 (4) \AA was found in the stacking direction, and a short C-H distance of $2.80 \AA$ was found in the intercolumnar contact.

S2. Experimental

The title compound was synthesized by a nickel promoted coupling reaction of 2,7-dibromonaphthalene and separated as reported in literature (Nakanishi et al., 2011). A single crystal suitable for X-ray crystallographic analysis was obtained by a solid solvent growth method, as reported except that the time for crystal growth was extended: A mixture of anthracene $(200 \mathrm{mg})$ and [6]CNAP (4 mg) was sealed in a glass tube. The whole glass tube was heated at $350{ }^{\circ} \mathrm{C}$ for 2 h . The subsequent crystal-growing time at $210^{\circ} \mathrm{C}$ was extended from 2 h to 3 h , and the tube was cooled gradually to ambient temperature. A half of the glass tube was then heated at $200^{\circ} \mathrm{C}$ to eliminate anthracene and afford crystals of [6]CNAP. For the original method of recrystallization, see: Miyahara \& Shimizu (2001).

S3. Refinement

H atoms were included in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95 \AA($ aromatic $)$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) $x,-y+2,-z+1$; (ii) $-x+1, y, z$; (iii) $-x+1,-y+2,-z+1$.

Figure 2
The packing structure of the title compound, viewed along the a axis.

[6]Cyclo-2,7-naphthylene

Crystal data

$\mathrm{C}_{60} \mathrm{H}_{36}$
$M_{r}=756.89$
Orthorhombic, Cmca
Hall symbol: -C 2bc 2
$a=34.224$ (6) \AA
$b=7.4629$ (14) \AA
$c=15.131$ (3) \AA
$V=3864.7(12) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: Bruker TXS fine-focus rotating anode
Bruker Helios multilayer confocal mirror monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.181$
$S=1.06$
2234 reflections
139 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& F(000)=1584 \\
& D_{\mathrm{x}}=1.301 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 5445 \text { reflections } \\
& \theta=2.4-27.2^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Plate, colourless } \\
& 0.40 \times 0.12 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

$T_{\text {min }}=0.686, T_{\text {max }}=0.996$
20522 measured reflections
2234 independent reflections
1667 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-43 \rightarrow 43$
$k=-9 \rightarrow 9$
$l=-19 \rightarrow 19$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0565 P)^{2}+7.0687 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}_{\AA^{-3}}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.28550(9)$	$0.7008(6)$	$0.37933(17)$	$0.0855(12)$
H1	0.2623	0.6634	0.3504	0.103^{*}
C2	$0.28488(8)$	$0.8521(5)$	$0.43007(18)$	$0.0805(11)$

H2	0.2610	0.9154	0.4371	0.097^{*}
C3	$0.31917(7)$	$0.9174(4)$	$0.47282(14)$	$0.0599(7)$
C4	$0.35317(7)$	$0.8204(3)$	$0.46178(14)$	$0.0521(6)$
H3	0.3764	0.8613	0.4897	0.062^{*}
C5	$0.35467(8)$	$0.6627(4)$	$0.41049(14)$	$0.0546(7)$
C6	$0.32004(9)$	$0.5987(5)$	$0.36887(15)$	$0.0705(9)$
C7	$0.32231(11)$	$0.4362(5)$	$0.32059(16)$	$0.0842(12)$
H4	0.2997	0.3918	0.2916	0.101^{*}
C8	$0.35645(11)$	$0.3425(4)$	$0.31496(15)$	$0.0777(11)$
H5	0.3570	0.2332	0.2828	0.093^{*}
C9	$0.39145(9)$	$0.4048(3)$	$0.35623(14)$	$0.0599(8)$
C10	$0.38962(8)$	$0.5646(3)$	$0.40197(13)$	$0.0518(6)$
H6	0.4127	0.6100	0.4286	0.062^{*}
C11	$0.46345(13)$	$0.0185(3)$	$0.35550(17)$	$0.0872(12)$
H7	0.4628	-0.1088	0.3562	0.105^{*}
C12	$0.42913(13)$	$0.1103(4)$	$0.35358(16)$	$0.0781(11)$
H8	0.4052	0.0460	0.3522	0.094^{*}
C13	$0.42846(10)$	$0.3024(3)$	$0.35367(14)$	$0.0602(8)$
C14	$0.46407(8)$	$0.3892(3)$	$0.35413(14)$	$0.0542(7)$
H9	0.4643	0.5165	0.3534	0.065^{*}
C15	0.5000	$0.2979(4)$	$0.35555(19)$	$0.0556(10)$
C16	0.5000	$0.1066(4)$	$0.3565(2)$	$0.0708(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
C1	$0.0610(18)$	$0.162(4)$	$0.0339(13)$	$-0.048(2)$	$-0.0068(12)$	$0.0195(17)$
C2	$0.0528(16)$	$0.151(3)$	$0.0375(13)$	$-0.0189(18)$	$-0.0027(11)$	$0.0297(17)$
C3	$0.0481(13)$	$0.100(2)$	$0.0322(11)$	$-0.0087(13)$	$-0.0009(9)$	$0.0234(11)$
C4	$0.0553(14)$	$0.0695(15)$	$0.0314(10)$	$-0.0175(12)$	$-0.0064(9)$	$0.0157(10)$
C5	$0.0663(16)$	$0.0706(16)$	$0.0270(10)$	$-0.0286(13)$	$-0.0066(10)$	$0.0130(10)$
C6	$0.0719(18)$	$0.114(2)$	$0.0260(10)$	$-0.0495(17)$	$-0.0031(10)$	$0.0138(13)$
C7	$0.094(2)$	$0.129(3)$	$0.0301(12)$	$-0.074(2)$	$-0.0006(13)$	$0.0028(15)$
C8	$0.116(3)$	$0.088(2)$	$0.0281(11)$	$-0.071(2)$	$0.0065(14)$	$-0.0042(12)$
C9	$0.098(2)$	$0.0553(14)$	$0.0264(10)$	$-0.0412(15)$	$-0.0006(11)$	$0.0023(9)$
C10	$0.0732(16)$	$0.0537(13)$	$0.0286(10)$	$-0.0308(12)$	$-0.0056(10)$	$0.0062(9)$
C11	$0.197(4)$	$0.0250(12)$	$0.0396(13)$	$-0.0237(18)$	$0.0074(18)$	$-0.0075(10)$
C12	$0.160(3)$	$0.0402(14)$	$0.0340(12)$	$-0.0427(18)$	$0.0088(16)$	$-0.0048(10)$
C13	$0.114(2)$	$0.0398(12)$	$0.0267(10)$	$-0.0318(14)$	$0.0039(12)$	$-0.0045(9)$
C14	$0.106(2)$	$0.0247(9)$	$0.0321(10)$	$-0.0139(11)$	$0.0003(11)$	$-0.0036(8)$
C15	$0.114(3)$	$0.0230(14)$	$0.0300(14)$	0.000	0.000	$-0.0045(11)$
C16	$0.157(4)$	$0.0237(15)$	$0.0318(16)$	0.000	0.000	$-0.0046(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.365(5)$	$\mathrm{C} 8-\mathrm{H} 5$	0.9500
$\mathrm{C} 1-\mathrm{C} 6$	$1.416(5)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.381(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 9-\mathrm{C} 13$	$1.480(4)$

supporting information

C2-C3	1.426 (4)
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
C3-C4	1.380 (3)
$\mathrm{C} 3-\mathrm{C} 3{ }^{\text {i }}$	1.482 (6)
C4-C5	1.410 (4)
C4-H3	0.9500
C5-C10	1.408 (4)
C5-C6	1.425 (3)
C6-C7	1.418 (5)
C7-C8	1.364 (5)
C7-H4	0.9500
C8-C9	1.429 (4)
C2-C1-C6	121.4 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.3
C6- $\mathrm{C}^{-}-\mathrm{H} 1$	119.3
C1-C2-C3	121.7 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	117.4 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	120.22 (15)
C2-C3-C3 ${ }^{\text {i }}$	122.4 (2)
C3-C4-C5	122.3 (2)
C3-C4-H3	118.8
C5-C4-H3	118.8
C10-C5-C4	121.0 (2)
C10-C5-C6	119.4 (3)
C4-C5-C6	119.5 (3)
C1-C6-C7	124.3 (3)
C1-C6-C5	117.7 (3)
C7-C6-C5	118.0 (3)
C8-C7-C6	121.2 (3)
C8-C7-H4	119.4
C6-C7-H4	119.4
C7-C8-C9	121.6 (3)
C7-C8-H5	119.2
C9-C8-H5	119.2
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	1.9 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.7 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\text {i }}$	179.2 (3)
C2-C3-C4-C5	0.1 (3)
C3- 3 - $3-\mathrm{C} 4-\mathrm{C} 5$	-179.8 (2)
C3-C4-C5-C10	-178.7 (2)
C3-C4-C5-C6	-0.6 (3)
C2-C1-C6-C7	177.0 (2)
C2-C1-C6-C5	-2.3 (4)
C10-C5-C6-C1	179.8 (2)

C10-H6	0.9500
C11-C12	1.360 (5)
C11-C16	1.413 (4)
C11-H7	0.9500
C12-C13	1.434 (4)
C12-H8	0.9500
C13-C14	1.380 (4)
C14-C15	1.406 (3)
C14-H9	0.9500
C15-C14 ${ }^{\text {ii }}$	1.406 (3)
C15-C16	1.428 (4)
C16-C11 ${ }^{\text {ii }}$	1.413 (4)
C10-C9-C8	117.5 (3)
C10-C9-C13	119.9 (2)
C8-C9-C13	122.6 (3)
C9-C10-C5	122.3 (2)
C9-C10-H6	118.9
C5-C10-H6	118.9
C12-C11-C16	122.0 (2)
C12-C11-H7	119.0
C16-C11-H7	119.0
C11-C12-C13	121.2 (3)
C11-C12-H8	119.4
C13-C12-H8	119.4
C14-C13-C12	117.1 (3)
C14-C13-C9	120.9 (2)
C12-C13-C9	122.0 (3)
C13-C14-C15	123.0 (2)
C13-C14-H9	118.5
C15-C14-H9	118.5
C14i- $\mathrm{C} 15-\mathrm{C} 14$	122.0 (3)
C14ii-C15-C16	118.99 (13)
C14-C15-C16	118.99 (13)
C11i--C16-C11	124.5 (4)
C11i--C16-C15	117.71 (19)
C11-C16-C15	117.71 (19)
C4-C5-C10-C9	176.39 (19)
C6-C5-C10-C9	-1.7 (3)
C16-C11-C12-C13	-0.9 (4)
C11-C12-C13-C14	1.2 (4)
C11-C12-C13-C9	-176.8 (2)
C10-C9-C13-C14	-33.1 (3)
C8-C9-C13-C14	148.8 (2)
C10-C9-C13-C12	144.8 (2)
C8-C9-C13-C12	-33.2 (3)
C12-C13-C14-C15	-0.8 (3)

supporting information

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.7(3)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.4(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-177.7(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-178.5(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$0.8(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-0.9(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.3(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 13$	$177.8(2)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$1.6(3)$
$\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-176.57(19)$

$\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$177.2(2)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 14{ }^{\mathrm{ii}}$	$178.65(17)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$0.1(4)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 11^{\mathrm{ii}}$	$-177.8(2)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	$0.1(4)$
$\mathrm{C} 14{ }^{\mathrm{ii}}-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11^{\mathrm{ii}}$	$-0.3(4)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11^{\mathrm{ii}}$	$178.3(2)$
$\mathrm{C} 14{ }^{\mathrm{ii}-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11}$	$-178.3(2)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	$0.3(4)$

Symmetry codes: (i) $x,-y+2,-z+1$; (ii) $-x+1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2007).

