organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1762-o1763

[6]Cyclo-2,7-naphthyl­ene: a redetermination

aDepartment of Chemistry, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
*Correspondence e-mail: isobe@m.tohoku.ac.jp

(Received 31 May 2011; accepted 16 June 2011; online 22 June 2011)

Single crystals of a macrocyclic hydro­carbon, [6]cyclo-2,7-naphthyl­ene ([6]CNAP, C60H36) were prepared from anthracene melt with a prolonged time for the recrystallization. The crystal of improved quality led to the correction of the space-group assignment to Cmca from [P\overline1] in the original determination [Nakanishi et al. (2011[Nakanishi, W., Yoshioka, T., Taka, H., Xue, J. Y., Kita, H. & Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 5323-5326.]) Angew. Chem. Int. Ed. 50, 5323–5326] and the refinement of anisotropic displacement parameters of all C atoms. The refined mol­ecular structure with C2h point symmetry indicated that the strain on the naphthyl rings of [6]CNAP is smallest among the congeners. Despite the large macrocyclic structure, mol­ecules are packed in a ubiquitous herringbone motif. A short C—C distance of 3.119 (4) Å was found in the stacking direction, and a short C—H distance of 2.80 Å was found in the inter­columnar contact.

Related literature

Superior quality crystals of the title compound were obtained by re-optimizing the crystallization conditions. For the synthesis and preceding crystallographic analysis, see: Nakanishi et al. (2011[Nakanishi, W., Yoshioka, T., Taka, H., Xue, J. Y., Kita, H. & Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 5323-5326.]). For the original method of recrystallization, see: Miyahara & Shimizu (2001[Miyahara, T. & Shimizu, M. (2001). J. Cryst. Growth, 229, 553-557.]). For a review of C—H⋯π contacts in crystals, see: Nishio (2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]).

[Scheme 1]

Experimental

Crystal data
  • C60H36

  • Mr = 756.89

  • Orthorhombic, C m c a

  • a = 34.224 (6) Å

  • b = 7.4629 (14) Å

  • c = 15.131 (3) Å

  • V = 3864.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.40 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.996

  • 20522 measured reflections

  • 2234 independent reflections

  • 1667 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.181

  • S = 1.06

  • 2234 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Polycyclic aromatic hydrocarbons are important compounds for the development of organic electronics. As new bipolar carrier transport materials for organic light emitting diodes, we recently reported [n]cyclo-2,7-naphthylenes ([n]CNAP; Nakanishi et al., 2011). The unique macrocyclic structures of [n]CNAPs (n = 5, 6 and 7) were revealed by X-ray crystallographic analysis of the single crystals, but we deferred detailed discussion of the most abundant compounds, [6]CNAP, because of insufficient quality of available data mainly due to weak reflections from the previous crystals. We now obtained single crystals of [6]CNAP with superior quality by re-optimizing the crystallization conditions and successfully corrected the space group assignment to Cmca. The molecular structure of title compound is shown in Fig. 1, and the packing structure is shown in Fig. 2. Most importantly, the refined molecular structure with C2h point symmetry shows that [6]CNAP has the smallest deformation in the planar naphthyl rings with the average bend angle of 2.3° which is smaller than 16° and 5° of [5]- and [7]CNAPs, respectively. To form the strain-free macrocycle, the naphthyl rings are twisted alternately with dihedral angles of 33.1 (3)° and 25.6 (4)°. Despite the large macrocyclic structure, molecules are packed in a ubiquitous herringbone motif. A short C—C distance of 3.119 (4) Å was found in the stacking direction, and a short C—H distance of 2.80 Å was found in the intercolumnar contact.

Related literature top

For the synthesis and preceding crystallographic analysis, see: Nakanishi et al. (2011). For the original method of recrystallization, see: Miyahara & Shimizu (2001). For the review of C—H···π contacts in crystals, see: Nishio (2004).

Experimental top

The title compound was synthesized by a nickel promoted coupling reaction of 2,7-dibromonaphthalene and separated as reported in literature (Nakanishi et al., 2011). A single crystal suitable for X-ray crystallographic analysis was obtained by a solid solvent growth method, as reported except that the time for crystal growth was extended: A mixture of anthracene (200 mg) and [6]CNAP (4 mg) was sealed in a glass tube. The whole glass tube was heated at 350 °C for 2 h. The subsequent crystal-growing time at 210 °C was extended from 2 h to 3 h, and the tube was cooled gradually to ambient temperature. A half of the glass tube was then heated at 200 °C to eliminate anthracene and afford crystals of [6]CNAP. For the original method of recrystallization, see: Miyahara & Shimizu (2001).

Refinement top

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) x, -y + 2, -z + 1; (ii) -x + 1, y, z; (iii) -x + 1, -y + 2, -z + 1.
[Figure 2] Fig. 2. The packing structure of the title compound, viewed along the a axis.
[6]Cyclo-2,7-naphthylene top
Crystal data top
C60H36F(000) = 1584
Mr = 756.89Dx = 1.301 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 5445 reflections
a = 34.224 (6) Åθ = 2.4–27.2°
b = 7.4629 (14) ŵ = 0.07 mm1
c = 15.131 (3) ÅT = 100 K
V = 3864.7 (12) Å3Plate, colourless
Z = 40.40 × 0.12 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2234 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode1667 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.035
Detector resolution: 8.333 pixels mm-1θmax = 27.5°, θmin = 2.4°
ϕ and ω scansh = 4343
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.686, Tmax = 0.996l = 1919
20522 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0565P)2 + 7.0687P]
where P = (Fo2 + 2Fc2)/3
2234 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C60H36V = 3864.7 (12) Å3
Mr = 756.89Z = 4
Orthorhombic, CmcaMo Kα radiation
a = 34.224 (6) ŵ = 0.07 mm1
b = 7.4629 (14) ÅT = 100 K
c = 15.131 (3) Å0.40 × 0.12 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2234 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1667 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.996Rint = 0.035
20522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2234 reflectionsΔρmin = 0.35 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28550 (9)0.7008 (6)0.37933 (17)0.0855 (12)
H10.26230.66340.35040.103*
C20.28488 (8)0.8521 (5)0.43007 (18)0.0805 (11)
H20.26100.91540.43710.097*
C30.31917 (7)0.9174 (4)0.47282 (14)0.0599 (7)
C40.35317 (7)0.8204 (3)0.46178 (14)0.0521 (6)
H30.37640.86130.48970.062*
C50.35467 (8)0.6627 (4)0.41049 (14)0.0546 (7)
C60.32004 (9)0.5987 (5)0.36887 (15)0.0705 (9)
C70.32231 (11)0.4362 (5)0.32059 (16)0.0842 (12)
H40.29970.39180.29160.101*
C80.35645 (11)0.3425 (4)0.31496 (15)0.0777 (11)
H50.35700.23320.28280.093*
C90.39145 (9)0.4048 (3)0.35623 (14)0.0599 (8)
C100.38962 (8)0.5646 (3)0.40197 (13)0.0518 (6)
H60.41270.61000.42860.062*
C110.46345 (13)0.0185 (3)0.35550 (17)0.0872 (12)
H70.46280.10880.35620.105*
C120.42913 (13)0.1103 (4)0.35358 (16)0.0781 (11)
H80.40520.04600.35220.094*
C130.42846 (10)0.3024 (3)0.35367 (14)0.0602 (8)
C140.46407 (8)0.3892 (3)0.35413 (14)0.0542 (7)
H90.46430.51650.35340.065*
C150.50000.2979 (4)0.35555 (19)0.0556 (10)
C160.50000.1066 (4)0.3565 (2)0.0708 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0610 (18)0.162 (4)0.0339 (13)0.048 (2)0.0068 (12)0.0195 (17)
C20.0528 (16)0.151 (3)0.0375 (13)0.0189 (18)0.0027 (11)0.0297 (17)
C30.0481 (13)0.100 (2)0.0322 (11)0.0087 (13)0.0009 (9)0.0234 (11)
C40.0553 (14)0.0695 (15)0.0314 (10)0.0175 (12)0.0064 (9)0.0157 (10)
C50.0663 (16)0.0706 (16)0.0270 (10)0.0286 (13)0.0066 (10)0.0130 (10)
C60.0719 (18)0.114 (2)0.0260 (10)0.0495 (17)0.0031 (10)0.0138 (13)
C70.094 (2)0.129 (3)0.0301 (12)0.074 (2)0.0006 (13)0.0028 (15)
C80.116 (3)0.088 (2)0.0281 (11)0.071 (2)0.0065 (14)0.0042 (12)
C90.098 (2)0.0553 (14)0.0264 (10)0.0412 (15)0.0006 (11)0.0023 (9)
C100.0732 (16)0.0537 (13)0.0286 (10)0.0308 (12)0.0056 (10)0.0062 (9)
C110.197 (4)0.0250 (12)0.0396 (13)0.0237 (18)0.0074 (18)0.0075 (10)
C120.160 (3)0.0402 (14)0.0340 (12)0.0427 (18)0.0088 (16)0.0048 (10)
C130.114 (2)0.0398 (12)0.0267 (10)0.0318 (14)0.0039 (12)0.0045 (9)
C140.106 (2)0.0247 (9)0.0321 (10)0.0139 (11)0.0003 (11)0.0036 (8)
C150.114 (3)0.0230 (14)0.0300 (14)0.0000.0000.0045 (11)
C160.157 (4)0.0237 (15)0.0318 (16)0.0000.0000.0046 (12)
Geometric parameters (Å, º) top
C1—C21.365 (5)C8—H50.9500
C1—C61.416 (5)C9—C101.381 (3)
C1—H10.9500C9—C131.480 (4)
C2—C31.426 (4)C10—H60.9500
C2—H20.9500C11—C121.360 (5)
C3—C41.380 (3)C11—C161.413 (4)
C3—C3i1.482 (6)C11—H70.9500
C4—C51.410 (4)C12—C131.434 (4)
C4—H30.9500C12—H80.9500
C5—C101.408 (4)C13—C141.380 (4)
C5—C61.425 (3)C14—C151.406 (3)
C6—C71.418 (5)C14—H90.9500
C7—C81.364 (5)C15—C14ii1.406 (3)
C7—H40.9500C15—C161.428 (4)
C8—C91.429 (4)C16—C11ii1.413 (4)
C2—C1—C6121.4 (3)C10—C9—C8117.5 (3)
C2—C1—H1119.3C10—C9—C13119.9 (2)
C6—C1—H1119.3C8—C9—C13122.6 (3)
C1—C2—C3121.7 (3)C9—C10—C5122.3 (2)
C1—C2—H2119.2C9—C10—H6118.9
C3—C2—H2119.2C5—C10—H6118.9
C4—C3—C2117.4 (3)C12—C11—C16122.0 (2)
C4—C3—C3i120.22 (15)C12—C11—H7119.0
C2—C3—C3i122.4 (2)C16—C11—H7119.0
C3—C4—C5122.3 (2)C11—C12—C13121.2 (3)
C3—C4—H3118.8C11—C12—H8119.4
C5—C4—H3118.8C13—C12—H8119.4
C10—C5—C4121.0 (2)C14—C13—C12117.1 (3)
C10—C5—C6119.4 (3)C14—C13—C9120.9 (2)
C4—C5—C6119.5 (3)C12—C13—C9122.0 (3)
C1—C6—C7124.3 (3)C13—C14—C15123.0 (2)
C1—C6—C5117.7 (3)C13—C14—H9118.5
C7—C6—C5118.0 (3)C15—C14—H9118.5
C8—C7—C6121.2 (3)C14ii—C15—C14122.0 (3)
C8—C7—H4119.4C14ii—C15—C16118.99 (13)
C6—C7—H4119.4C14—C15—C16118.99 (13)
C7—C8—C9121.6 (3)C11ii—C16—C11124.5 (4)
C7—C8—H5119.2C11ii—C16—C15117.71 (19)
C9—C8—H5119.2C11—C16—C15117.71 (19)
C6—C1—C2—C31.9 (4)C4—C5—C10—C9176.39 (19)
C1—C2—C3—C40.7 (4)C6—C5—C10—C91.7 (3)
C1—C2—C3—C3i179.2 (3)C16—C11—C12—C130.9 (4)
C2—C3—C4—C50.1 (3)C11—C12—C13—C141.2 (4)
C3i—C3—C4—C5179.8 (2)C11—C12—C13—C9176.8 (2)
C3—C4—C5—C10178.7 (2)C10—C9—C13—C1433.1 (3)
C3—C4—C5—C60.6 (3)C8—C9—C13—C14148.8 (2)
C2—C1—C6—C7177.0 (2)C10—C9—C13—C12144.8 (2)
C2—C1—C6—C52.3 (4)C8—C9—C13—C1233.2 (3)
C10—C5—C6—C1179.8 (2)C12—C13—C14—C150.8 (3)
C4—C5—C6—C11.7 (3)C9—C13—C14—C15177.2 (2)
C10—C5—C6—C70.4 (3)C13—C14—C15—C14ii178.65 (17)
C4—C5—C6—C7177.7 (2)C13—C14—C15—C160.1 (4)
C1—C6—C7—C8178.5 (2)C12—C11—C16—C11ii177.8 (2)
C5—C6—C7—C80.8 (4)C12—C11—C16—C150.1 (4)
C6—C7—C8—C90.9 (4)C14ii—C15—C16—C11ii0.3 (4)
C7—C8—C9—C100.3 (3)C14—C15—C16—C11ii178.3 (2)
C7—C8—C9—C13177.8 (2)C14ii—C15—C16—C11178.3 (2)
C8—C9—C10—C51.6 (3)C14—C15—C16—C110.3 (4)
C13—C9—C10—C5176.57 (19)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC60H36
Mr756.89
Crystal system, space groupOrthorhombic, Cmca
Temperature (K)100
a, b, c (Å)34.224 (6), 7.4629 (14), 15.131 (3)
V3)3864.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.12 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
20522, 2234, 1667
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.181, 1.06
No. of reflections2234
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.35

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

This study was partly supported by KAKENHI (21685005, 20108015 to HI and 22550094 to WN). We thank Professor T. Iwamoto for the use of the X-ray instrument.

References

First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyahara, T. & Shimizu, M. (2001). J. Cryst. Growth, 229, 553–557.  CrossRef CAS Google Scholar
First citationNakanishi, W., Yoshioka, T., Taka, H., Xue, J. Y., Kita, H. & Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 5323–5326.  CrossRef CAS Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1762-o1763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds