organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Nitro­phenyl)(1,2,3,9-tetra­hydro­pyrrolo[2,1-b]quinazolin-3-yl)methanol monohydrate

aS.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: ch_mahmadiyorova@rambler.ru

(Received 27 May 2011; accepted 6 June 2011; online 18 June 2011)

In the crystal structure of the title compound, C18H17N3O3·H2O, the mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, resulting in a chain along the a axis. The crystal structure is stabilized by weak inter­molecular C—H⋯π (ring) hydrogen bonds and aromatic ππ stacking inter­actions [centroid–centroid distance = 3.902 (1) Å] between the pyrimidino rings of the quinazoline system. The tricyclic quinazoline fragment is almost planar (rms deviation = 0.0139 Å) with the two methylene C atoms of the pyrrolo ring deviating by 0.148 (2) and −0.081 (3) Å from the plane through the other atoms. The 4-nitrophenyl ring makes a dihedral angle of 12.55 (7)° with the tricyclic ring system.

Related literature

For general background to tricyclic quinazoline alkaloids, see: Shakhidoyatov et al. (1988[Shakhidoyatov, Kh. M. (1988). Quinazol-4-ones and Their Biological Activity, pp. 99-104. Tashkent: Fan.]). For the synthesis of 1,2,3,9-tetra­hydro-pyrrolo­[2,1-b]quinazoline, see: Jahng et al. (2008[Jahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J.-K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607-609.]). For the physiological activity of quinazoline derivatives, see: Al-Shamma et al. (1981[Al-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod. 44, 745-747.]); Yunusov et al. (1978[Yunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; `Anticholinesterase agent', Byull. Izobret. No.17.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3O3·H2O

  • Mr = 341.36

  • Triclinic, [P \overline 1]

  • a = 6.2459 (7) Å

  • b = 11.4629 (11) Å

  • c = 11.8400 (13) Å

  • α = 91.932 (8)°

  • β = 95.589 (9)°

  • γ = 104.747 (9)°

  • V = 814.37 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 295 K

  • 0.50 × 0.35 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.793, Tmax = 1.000

  • 4649 measured reflections

  • 2867 independent reflections

  • 2076 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.03

  • 2867 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,C2,N3,C4,C4A,C8A and C4A,C5–C8,C8A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1 0.86 (2) 1.89 (3) 2.751 (2) 174 (2)
O1W—H2W⋯O1i 0.89 (3) 1.97 (3) 2.835 (2) 162 (2)
O1—H1⋯O1Wii 0.95 (4) 1.71 (3) 2.660 (2) 173 (3)
C4—H4BCg1iii 0.97 2.92 3.634 (2) 131
C11—H11ACg2iii 0.97 2.94 3.681 (2) 134
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tricyclic quinazoline alkaloids are a large group of heterocyclic compounds (Shakhidoyatov et al., 1988; Jahng et al., 2008). These compounds and their derivatives possess difference pharmacological activities (Al-Shamma et al., 1981; Yunusov et al., 1978). Reaction of 1,2,3,9-tetrahydro-pyrrolo[2,1-b]quinazoline with p-nitrobenzaldehyde in ethanol at present of sodium hydroxide leads to the formation of 3-(p-nitrophenyl)-hydroxymethyl-1,2,3,9-tetrahydro-pyrrolo[2,1- b]quinazoline (Fig. 1). The title molecule has two asymmetric centre. The crystal is a racemate of two optical antipodes. The asymmetric unit contains one molecule of 3-(p-nitrophenyl)-hydroxymethyl-1,2,3,9-tetrahydro-pyrrolo[2,1- b]quinazoline and one water molecule (Fig. 2). In the molecule tryciclic quinazoline fragment almost planar with of slightly twisting of atoms C9 and C10. Deviations of last atoms from plane of rest atoms (rms deviation = 0.0139Å) in the tricycle are 0.148 (2)Å and -0.081 (3)Å, respectively.

Hydroxyl groups of two centrosymmetrical related molecules of title compound and two water molecules form a H-bond regtangles (nearly). In addition the water molecules are hydrogen bonded to the title compound molecules through N1 atom (Table 1). In the result are formed H-bond chains along the a axis of the cell (Fig. 3). The observed structure is stabilized by weak C—H···π (Table 1) and aromatic π···π stacking interactions. A centrosymmetric π···π stacking interactions are observed between pyrimidino (N1/C2/N3/C4/C4A/C8A) rings of centrosymmetrically related molecules (Cg1···Cg1i separation is 3.902 (1)Å, where symmetry code: (i) 1-x, 1-y, 1-z).

Related literature top

For general background to tricyclic quinazoline alkaloids, see: Shakhidoyatov et al. (1988). For the synthesis of 1,2,3,9-tetrahydro-pyrrolo[2,1-b]quinazoline, see: Jahng et al. (2008). For the physiological activity of quinazoline derivatives, see: Al-Shamma et al. (1981); Yunusov et al. (1978).

Experimental top

Sodium hydroxide (0.1 g, 2.5 mmol) was dissolved in 40 ml ethanol (80%), and 1,2,3,9-tetrahydro-pyrrolo[2,1-b]quinazoline hydrochloride (0.448 g, 2 mmol) and p-nitrobenzaldehyde (0.604 g, 4 mmol) were added (Fig. 1). Reaction mixture was left at 278 (1) K for 5 weeks. Light yellow crystals (m.p. 473–474 K) suitable for X-ray diffraction were isolated in 72% yield (0.44 g).

1H NMR (400 MHz, C5H5N): 8.1 (2H, d, J = 8.8, H-3',5'), 7.9 (1H, s, OH), 7.67 (1H, d, J = 8.6, H-8), 7.67 (2H, d, J = 8.6, H-2',6'), 7.14 (2H, t, J = 8.6, H-6), 6.9 (1H, td, J = 8.6, J = 2.0, H-7), 6.8 (1H, d, J = 7.6, H-5), 5.06 (1H, d, J = 8.4, CH), 4.17 (1H, s, 9-H), 2.94 (1H, q, J = 8.6, H-1a), 2.78 (1H, q, J = 9.4, H-1b), 2.65 (2H, td, J = 8.6, J = 3.3, 3-H), 1.52 (2H, m, 2-H).

Mass (m/z, %): 323 ([M]+, 5.6), 305 ([M-H2O]+, 6.3), 201 ([M-C6H4NO2]+, 2.8), 171 ([M-(HO)CHC6H4NO2]+, 100), 151 (51), 76 (55).

Refinement top

Carbon-bound H atoms were positioned geometrically and treated as riding on their C atoms, with C—H distances of 0.93Å (aromatic) and 0.97Å (methylene) and were refined with Uiso(H) = 1.2Ueq(C)]. The H atoms of hydroxyl group [O—H = 0.95 (3)Å] and the water molecule [O—H = 0.86 (3)Å and 0.89 (3)Å] involved in the intermolecular hydrogen bonds were located by difference Fourier map and refined freely.

Computing details top

Data collection: CrysAlis PRO, (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO, (Oxford Diffraction, 2009); data reduction: CrysAlis PRO, (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The reaction scheme.
[Figure 2] Fig. 2. The molecular structure of title compound with atom labels. The displacement ellipsoidsand are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. Packing diagramm, showing the formation of H-bonded (dashed lines) chains along [1 0 0]. H atoms are omitted for clarity.
(4-Nitrophenyl)(1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3- yl)methanol monohydrate top
Crystal data top
C18H17N3O3·H2OZ = 2
Mr = 341.36F(000) = 360
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Melting point = 473(2)–474(2) K
a = 6.2459 (7) ÅCu Kα radiation, λ = 1.54180 Å
b = 11.4629 (11) ÅCell parameters from 1912 reflections
c = 11.8400 (13) Åθ = 3.8–66.8°
α = 91.932 (8)°µ = 0.83 mm1
β = 95.589 (9)°T = 295 K
γ = 104.747 (9)°Prism, light-yellow
V = 814.37 (15) Å30.50 × 0.35 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2867 independent reflections
Radiation source: Enhance (Cu) X-ray Source2076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.2576 pixels mm-1θmax = 66.9°, θmin = 3.8°
ω–scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.793, Tmax = 1.000l = 1114
4649 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.0389P]
where P = (Fo2 + 2Fc2)/3
2867 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H17N3O3·H2Oγ = 104.747 (9)°
Mr = 341.36V = 814.37 (15) Å3
Triclinic, P1Z = 2
a = 6.2459 (7) ÅCu Kα radiation
b = 11.4629 (11) ŵ = 0.83 mm1
c = 11.8400 (13) ÅT = 295 K
α = 91.932 (8)°0.50 × 0.35 × 0.15 mm
β = 95.589 (9)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2867 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2076 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 1.000Rint = 0.022
4649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2867 reflectionsΔρmin = 0.20 e Å3
238 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8540 (2)0.61715 (12)0.92847 (12)0.0555 (4)
O20.6598 (3)1.09493 (15)1.24380 (17)0.0991 (6)
O30.3240 (3)0.99048 (18)1.24831 (17)0.1005 (6)
N10.3825 (2)0.45278 (13)0.71834 (12)0.0471 (4)
C20.5561 (3)0.54174 (16)0.71298 (14)0.0427 (4)
N30.7234 (2)0.54380 (13)0.65065 (13)0.0487 (4)
C40.7416 (3)0.44111 (18)0.58074 (16)0.0537 (5)
H4A0.87830.41970.60600.064*
H4B0.74730.46240.50230.064*
C4A0.5454 (3)0.33484 (17)0.58861 (15)0.0475 (4)
C50.5291 (4)0.22532 (19)0.53039 (18)0.0636 (6)
H5A0.64150.21780.48680.076*
C60.3493 (4)0.1273 (2)0.5359 (2)0.0700 (6)
H6A0.34140.05450.49640.084*
C70.1821 (4)0.13746 (18)0.59957 (19)0.0643 (6)
H7A0.05990.07190.60280.077*
C80.1959 (3)0.24550 (17)0.65902 (17)0.0558 (5)
H8A0.08280.25180.70270.067*
C8A0.3761 (3)0.34467 (16)0.65443 (14)0.0451 (4)
C90.5996 (3)0.65999 (15)0.78287 (15)0.0457 (4)
H9A0.47100.69400.76980.055*
C100.8016 (4)0.74163 (18)0.73443 (18)0.0609 (5)
H10A0.75620.80170.68880.073*
H10B0.91290.78280.79550.073*
C110.8949 (3)0.65817 (18)0.66131 (18)0.0575 (5)
H11A0.91940.68980.58740.069*
H11B1.03450.64830.69800.069*
C120.6388 (3)0.63750 (15)0.90930 (14)0.0433 (4)
H12A0.52950.56310.92400.052*
C130.6112 (3)0.73811 (15)0.98840 (14)0.0425 (4)
C140.7810 (3)0.83964 (17)1.02340 (17)0.0563 (5)
H14A0.91960.84850.99730.068*
C150.7481 (3)0.92825 (17)1.09669 (18)0.0611 (5)
H15A0.86300.99671.11930.073*
C160.5446 (3)0.91394 (16)1.13547 (16)0.0510 (5)
C170.3738 (3)0.8124 (2)1.10522 (19)0.0652 (6)
H17A0.23730.80261.13400.078*
C180.4091 (3)0.72560 (19)1.03133 (19)0.0619 (6)
H18A0.29420.65681.00980.074*
N190.5065 (4)1.00649 (17)1.21455 (16)0.0689 (5)
H10.878 (4)0.600 (3)1.006 (3)0.113 (10)*
O1W0.0490 (2)0.43285 (14)0.85779 (12)0.0573 (4)
H1W0.151 (4)0.444 (2)0.812 (2)0.081 (8)*
H2W0.024 (4)0.490 (3)0.864 (2)0.107 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0543 (8)0.0736 (9)0.0481 (8)0.0331 (7)0.0083 (6)0.0005 (7)
O20.1175 (15)0.0596 (10)0.1127 (15)0.0132 (10)0.0153 (11)0.0336 (10)
O30.0964 (13)0.1053 (13)0.1106 (15)0.0431 (11)0.0318 (11)0.0328 (11)
N10.0458 (8)0.0505 (9)0.0447 (8)0.0111 (7)0.0108 (7)0.0062 (7)
C20.0426 (9)0.0493 (10)0.0379 (9)0.0156 (8)0.0039 (7)0.0014 (7)
N30.0474 (8)0.0537 (9)0.0458 (9)0.0118 (7)0.0136 (7)0.0008 (7)
C40.0515 (11)0.0680 (12)0.0460 (11)0.0219 (9)0.0116 (8)0.0019 (9)
C4A0.0520 (10)0.0563 (11)0.0376 (9)0.0212 (9)0.0036 (8)0.0013 (8)
C50.0705 (14)0.0696 (14)0.0563 (12)0.0293 (11)0.0087 (10)0.0112 (10)
C60.0858 (16)0.0566 (12)0.0676 (14)0.0239 (12)0.0001 (12)0.0163 (11)
C70.0711 (14)0.0504 (11)0.0652 (13)0.0071 (10)0.0025 (11)0.0043 (10)
C80.0588 (12)0.0556 (11)0.0521 (12)0.0125 (9)0.0103 (9)0.0020 (9)
C8A0.0498 (10)0.0481 (10)0.0381 (9)0.0147 (8)0.0038 (8)0.0000 (7)
C90.0472 (10)0.0466 (9)0.0443 (10)0.0153 (8)0.0032 (8)0.0012 (8)
C100.0749 (14)0.0518 (11)0.0520 (12)0.0069 (10)0.0126 (10)0.0050 (9)
C110.0522 (11)0.0611 (12)0.0553 (12)0.0051 (9)0.0111 (9)0.0072 (9)
C120.0404 (9)0.0465 (9)0.0447 (10)0.0130 (8)0.0097 (7)0.0007 (8)
C130.0394 (9)0.0471 (9)0.0412 (9)0.0121 (8)0.0042 (7)0.0001 (7)
C140.0465 (10)0.0555 (11)0.0630 (13)0.0028 (9)0.0182 (9)0.0053 (9)
C150.0610 (12)0.0463 (10)0.0670 (13)0.0034 (9)0.0132 (10)0.0087 (9)
C160.0609 (12)0.0478 (10)0.0474 (10)0.0211 (9)0.0050 (9)0.0035 (8)
C170.0436 (11)0.0751 (14)0.0766 (14)0.0156 (10)0.0139 (10)0.0211 (11)
C180.0382 (10)0.0673 (12)0.0728 (14)0.0025 (9)0.0107 (9)0.0252 (10)
N190.0874 (14)0.0598 (11)0.0644 (12)0.0304 (11)0.0071 (10)0.0099 (9)
O1W0.0554 (9)0.0704 (9)0.0539 (8)0.0256 (7)0.0187 (7)0.0049 (7)
Geometric parameters (Å, º) top
O1—C121.420 (2)C9—C121.534 (2)
O1—H10.95 (3)C9—C101.540 (3)
O2—N191.217 (2)C9—H9A0.9800
O3—N191.216 (2)C10—C111.527 (3)
N1—C21.294 (2)C10—H10A0.9700
N1—C8A1.420 (2)C10—H10B0.9700
C2—N31.333 (2)C11—H11A0.9700
C2—C91.513 (2)C11—H11B0.9700
N3—C41.451 (2)C12—C131.515 (2)
N3—C111.459 (2)C12—H12A0.9800
C4—C4A1.505 (3)C13—C141.380 (2)
C4—H4A0.9700C13—C181.382 (2)
C4—H4B0.9700C14—C151.381 (3)
C4A—C51.387 (3)C14—H14A0.9300
C4A—C8A1.398 (2)C15—C161.366 (3)
C5—C61.380 (3)C15—H15A0.9300
C5—H5A0.9300C16—C171.374 (3)
C6—C71.372 (3)C16—N191.471 (2)
C6—H6A0.9300C17—C181.377 (3)
C7—C81.383 (3)C17—H17A0.9300
C7—H7A0.9300C18—H18A0.9300
C8—C8A1.388 (3)O1W—H1W0.86 (3)
C8—H8A0.9300O1W—H2W0.89 (3)
C12—O1—H1108.1 (17)C11—C10—H10A110.5
C2—N1—C8A115.94 (14)C9—C10—H10A110.5
N1—C2—N3126.93 (16)C11—C10—H10B110.5
N1—C2—C9123.07 (15)C9—C10—H10B110.5
N3—C2—C9109.97 (15)H10A—C10—H10B108.7
C2—N3—C4123.89 (15)N3—C11—C10104.22 (14)
C2—N3—C11114.25 (15)N3—C11—H11A110.9
C4—N3—C11121.82 (14)C10—C11—H11A110.9
N3—C4—C4A110.24 (14)N3—C11—H11B110.9
N3—C4—H4A109.6C10—C11—H11B110.9
C4A—C4—H4A109.6H11A—C11—H11B108.9
N3—C4—H4B109.6O1—C12—C13112.19 (14)
C4A—C4—H4B109.6O1—C12—C9107.19 (13)
H4A—C4—H4B108.1C13—C12—C9113.63 (14)
C5—C4A—C8A118.79 (18)O1—C12—H12A107.9
C5—C4A—C4120.53 (17)C13—C12—H12A107.9
C8A—C4A—C4120.68 (16)C9—C12—H12A107.9
C6—C5—C4A121.3 (2)C14—C13—C18118.21 (17)
C6—C5—H5A119.4C14—C13—C12123.21 (15)
C4A—C5—H5A119.4C18—C13—C12118.53 (16)
C7—C6—C5119.88 (19)C13—C14—C15120.99 (17)
C7—C6—H6A120.1C13—C14—H14A119.5
C5—C6—H6A120.1C15—C14—H14A119.5
C6—C7—C8119.8 (2)C16—C15—C14119.12 (18)
C6—C7—H7A120.1C16—C15—H15A120.4
C8—C7—H7A120.1C14—C15—H15A120.4
C7—C8—C8A120.87 (19)C15—C16—C17121.54 (17)
C7—C8—H8A119.6C15—C16—N19120.08 (18)
C8A—C8—H8A119.6C17—C16—N19118.35 (18)
C8—C8A—C4A119.37 (17)C16—C17—C18118.45 (18)
C8—C8A—N1118.37 (16)C16—C17—H17A120.8
C4A—C8A—N1122.25 (16)C18—C17—H17A120.8
C2—C9—C12109.34 (14)C17—C18—C13121.65 (18)
C2—C9—C10103.65 (14)C17—C18—H18A119.2
C12—C9—C10114.74 (15)C13—C18—H18A119.2
C2—C9—H9A109.6O3—N19—O2123.18 (19)
C12—C9—H9A109.6O3—N19—C16118.45 (19)
C10—C9—H9A109.6O2—N19—C16118.4 (2)
C11—C10—C9106.12 (15)H1W—O1W—H2W118 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,C2,N3,C4,C4A,C8A and C4A,C5–C8,C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.86 (2)1.89 (3)2.751 (2)174 (2)
O1W—H2W···O1i0.89 (3)1.97 (3)2.835 (2)162 (2)
O1—H1···O1Wii0.95 (4)1.71 (3)2.660 (2)173 (3)
C4—H4B···Cg1iii0.972.923.634 (2)131
C11—H11A···Cg2iii0.972.943.681 (2)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H17N3O3·H2O
Mr341.36
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.2459 (7), 11.4629 (11), 11.8400 (13)
α, β, γ (°)91.932 (8), 95.589 (9), 104.747 (9)
V3)814.37 (15)
Z2
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.50 × 0.35 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.793, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4649, 2867, 2076
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.03
No. of reflections2867
No. of parameters238
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: CrysAlis PRO, (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,C2,N3,C4,C4A,C8A and C4A,C5–C8,C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.86 (2)1.89 (3)2.751 (2)174 (2)
O1W—H2W···O1i0.89 (3)1.97 (3)2.835 (2)162 (2)
O1—H1···O1Wii0.95 (4)1.71 (3)2.660 (2)173 (3)
C4—H4B···Cg1iii0.972.923.634 (2)131
C11—H11A···Cg2iii0.972.943.681 (2)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant FA–F3–T047).

References

First citationAl-Shamma, A., Drake, S., Flynn, D. L., Mitscher, L. A., Park, Y. H., Rao, G. S. R., Simpson, A., Swayze, J. K., Veysoglu, T. & Wu, S. T. S. (1981). J. Nat. Prod. 44, 745–747.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJahng, K. C., Kim, S. I., Kim, D. H., Seo, C. S., Son, J.-K., Lee, S. H., Lee, E. S. & Jahng, Y. (2008). Chem. Pharm. Bull. 56, 607–609.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakhidoyatov, Kh. M. (1988). Quinazol-4-ones and Their Biological Activity, pp. 99–104. Tashkent: Fan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYunusov, S. Yu., Tulyaganov, N., Telezhenetskaya, M. V., Sadritdinov, F. & Khashimov, Kh. (1978). USSR Patent No. 605614; `Anticholinesterase agent', Byull. Izobret. No.17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds