metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[diformatocopper(II)]-μ-1,4-bis­­(imidazol-1-yl)benzene]

aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: nwuchem@126.com

(Received 31 March 2011; accepted 19 June 2011; online 30 June 2011)

In the title compound, [Cu(CHO2)2(C12H10N4)], the CuII ion lies on an inversion center and is coordinated by two formate O atoms and two N atoms from two 1,4-bis­(imidazol-1-yl)phenyl ligands (L), forming a square-planar coordination environment. The linear mol­ecule L acts as a bidente bridging ligand, connecting the metal atoms into a chain along [101].

Related literature

For background to coordination polymers containing imidazole-derived ligands, see: Cui et al. (2005[Cui, G. H., Li, J. R., Tian, J. L., Bu, X. H. & Batten, S. R. (2005). Cryst. Growth Des. 5, 1775-1780.]); Jin et al. (2008[Jin, C. M., Wu, L. Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215-218.]); Li et al. (2009[Li, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904-3909.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CHO2)2(C12H10N4)]

  • Mr = 363.82

  • Monoclinic, P 21 /c

  • a = 8.0971 (16) Å

  • b = 10.426 (2) Å

  • c = 8.5723 (17) Å

  • β = 107.02 (3)°

  • V = 692.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.624, Tmax = 0.725

  • 6003 measured reflections

  • 1204 independent reflections

  • 1108 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.075

  • S = 1.11

  • 1204 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole has been extensively used in crystal engineering, and a large number of imidazole-containing flexible ligands have been extensively studied (Cui et al., 2005; Jin et al., 2008). However, to our knowledge, the research on imidazole ligands bearing rigid spacers is still less developed (Li et al., 2009). For the title compound, the geometry of the CuII ion is bound by two imidazole rings of individual L ligands and two formate ions forming a square planar coordination environment (Fig. 1). Notably, as shown in Fig. 2, the four-coordinate CuII center is bridged by the linear ligand L to form an infinite one-dimensional chain along the [101] direction.

Related literature top

For background to coordination polymers containing imidazole-derived ligands, see: Cui et al. (2005); Jin et al. (2008); Li et al. (2009).

Experimental top

A mixture of CH3OH and H2O (1:1, 8 ml), as a buffer layer, was carefully layered over a solution of Cu(HCO2)2 in H2O (6 ml). Then a solution of 1,4-bis(imidazol-1-yl)phenyl (L, 0.06 mmol) in CH3OH (6 ml) was layered over the buffer layer, and the resultant reaction was left to stand at room temperature. After ca. three weeks, blue block single crystals appeared at the boundary. Yield: ~25% (based on L).

Refinement top

C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.93Å and Uiso(H) = 1.2Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius (symmetry codes: A = 1-x, 1-y, -z; B = 1+x, y, -1+z; C = -x, 1-y, 1-z.).
[Figure 2] Fig. 2. The crystal packing for (I).
catena-Poly[[diformatocopper(II)]-µ-1,4-bis(imidazol-1-yl)benzene] top
Crystal data top
[Cu(CHO2)2(C12H10N4)]F(000) = 370
Mr = 363.82Dx = 1.746 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0971 (16) ÅCell parameters from 2022 reflections
b = 10.426 (2) Åθ = 2.0–27.9°
c = 8.5723 (17) ŵ = 1.61 mm1
β = 107.02 (3)°T = 293 K
V = 692.0 (2) Å3Block, blue
Z = 20.30 × 0.25 × 0.20 mm
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1204 independent reflections
Radiation source: fine-focus sealed tube1108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.624, Tmax = 0.725l = 1010
6003 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.4041P]
where P = (Fo2 + 2Fc2)/3
1204 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(CHO2)2(C12H10N4)]V = 692.0 (2) Å3
Mr = 363.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0971 (16) ŵ = 1.61 mm1
b = 10.426 (2) ÅT = 293 K
c = 8.5723 (17) Å0.30 × 0.25 × 0.20 mm
β = 107.02 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
1204 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1108 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.725Rint = 0.026
6003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.11Δρmax = 0.40 e Å3
1204 reflectionsΔρmin = 0.39 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.00000.01074 (16)
O20.3615 (2)0.73953 (14)0.05814 (18)0.0215 (4)
O10.55129 (17)0.64376 (14)0.15185 (16)0.0154 (3)
N20.1326 (2)0.44066 (17)0.24042 (19)0.0116 (4)
N10.3015 (2)0.45187 (17)0.0816 (2)0.0128 (4)
C70.4602 (3)0.73795 (19)0.0823 (3)0.0168 (4)
H70.46860.81300.14270.020*
C40.0645 (3)0.4692 (2)0.3731 (2)0.0123 (4)
C30.0710 (2)0.35192 (19)0.1173 (2)0.0142 (4)
H30.02380.29810.10320.017*
C20.1769 (3)0.35939 (19)0.0218 (2)0.0146 (4)
H20.16730.30970.07060.018*
C60.1121 (3)0.4657 (2)0.3490 (2)0.0142 (4)
H60.18640.44190.24820.017*
C10.2703 (3)0.49981 (17)0.2138 (3)0.0112 (4)
H10.33400.56470.27860.013*
C50.1772 (3)0.50202 (18)0.5231 (3)0.0144 (5)
H50.29570.50250.53820.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0110 (2)0.0136 (2)0.0095 (2)0.00028 (12)0.00592 (16)0.00072 (12)
O20.0258 (8)0.0209 (8)0.0175 (8)0.0000 (7)0.0058 (6)0.0008 (6)
O10.0144 (7)0.0196 (8)0.0142 (7)0.0003 (6)0.0073 (6)0.0034 (6)
N20.0118 (8)0.0144 (9)0.0107 (8)0.0009 (7)0.0063 (7)0.0008 (7)
N10.0144 (8)0.0131 (8)0.0123 (8)0.0014 (7)0.0062 (7)0.0000 (7)
C70.0202 (10)0.0138 (10)0.0205 (11)0.0035 (8)0.0124 (9)0.0034 (9)
C40.0158 (10)0.0131 (9)0.0104 (9)0.0010 (8)0.0077 (8)0.0029 (8)
C30.0139 (9)0.0150 (10)0.0140 (9)0.0027 (8)0.0045 (8)0.0008 (8)
C20.0181 (10)0.0150 (10)0.0117 (9)0.0005 (8)0.0059 (8)0.0030 (8)
C60.0128 (10)0.0216 (10)0.0080 (9)0.0016 (8)0.0028 (8)0.0006 (8)
C10.0115 (11)0.0137 (10)0.0098 (10)0.0003 (7)0.0050 (9)0.0012 (7)
C50.0101 (10)0.0201 (12)0.0143 (11)0.0004 (7)0.0055 (9)0.0014 (7)
Geometric parameters (Å, º) top
Cu1—O1i1.9485 (14)C7—H70.9300
Cu1—O11.9485 (14)C4—C51.384 (3)
Cu1—N1i1.9953 (17)C4—C61.384 (3)
Cu1—N11.9953 (17)C3—C21.350 (3)
O2—C71.235 (3)C3—H30.9300
O1—C71.267 (3)C2—H20.9300
N2—C11.351 (3)C6—C5ii1.390 (3)
N2—C31.382 (3)C6—H60.9300
N2—C41.433 (3)C1—H10.9300
N1—C11.329 (3)C5—C6ii1.390 (3)
N1—C21.381 (3)C5—H50.9300
O1i—Cu1—O1180.00 (8)C5—C4—N2119.09 (19)
O1i—Cu1—N1i89.73 (7)C6—C4—N2119.75 (19)
O1—Cu1—N1i90.27 (7)C2—C3—N2105.86 (17)
O1i—Cu1—N190.27 (7)C2—C3—H3127.1
O1—Cu1—N189.73 (7)N2—C3—H3127.1
N1i—Cu1—N1180.0C3—C2—N1109.86 (17)
C7—O1—Cu1107.51 (12)C3—C2—H2125.1
C1—N2—C3107.92 (16)N1—C2—H2125.1
C1—N2—C4124.60 (17)C4—C6—C5ii119.3 (2)
C3—N2—C4127.48 (17)C4—C6—H6120.4
C1—N1—C2106.15 (17)C5ii—C6—H6120.4
C1—N1—Cu1125.33 (14)N1—C1—N2110.19 (18)
C2—N1—Cu1128.41 (13)N1—C1—H1124.9
O2—C7—O1126.19 (19)N2—C1—H1124.9
O2—C7—H7116.9C4—C5—C6ii119.6 (2)
O1—C7—H7116.9C4—C5—H5120.2
C5—C4—C6121.1 (2)C6ii—C5—H5120.2
O1i—Cu1—O1—C7151.1 (3)C1—N2—C3—C21.1 (2)
N1i—Cu1—O1—C793.37 (13)C4—N2—C3—C2179.90 (19)
N1—Cu1—O1—C786.63 (13)N2—C3—C2—N10.7 (2)
O1i—Cu1—N1—C1168.60 (17)C1—N1—C2—C30.1 (2)
O1—Cu1—N1—C111.40 (17)Cu1—N1—C2—C3176.50 (14)
N1i—Cu1—N1—C17 (100)C5—C4—C6—C5ii1.2 (3)
O1i—Cu1—N1—C27.16 (17)N2—C4—C6—C5ii177.73 (18)
O1—Cu1—N1—C2172.84 (17)C2—N1—C1—N20.6 (2)
N1i—Cu1—N1—C2177 (100)Cu1—N1—C1—N2175.95 (12)
Cu1—O1—C7—O22.2 (3)C3—N2—C1—N11.1 (2)
C1—N2—C4—C535.7 (3)C4—N2—C1—N1179.88 (17)
C3—N2—C4—C5145.4 (2)C6—C4—C5—C6ii1.2 (3)
C1—N2—C4—C6143.3 (2)N2—C4—C5—C6ii177.73 (18)
C3—N2—C4—C635.6 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(CHO2)2(C12H10N4)]
Mr363.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0971 (16), 10.426 (2), 8.5723 (17)
β (°) 107.02 (3)
V3)692.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.624, 0.725
No. of measured, independent and
observed [I > 2σ(I)] reflections
6003, 1204, 1108
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.075, 1.11
No. of reflections1204
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.39

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationCui, G. H., Li, J. R., Tian, J. L., Bu, X. H. & Batten, S. R. (2005). Cryst. Growth Des. 5, 1775–1780.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJin, C. M., Wu, L. Y., Lu, H. & Xu, Y. (2008). Cryst. Growth Des. 8, 215–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. X., Xu, Y., Zuo, Y., Li, L., Pan, Q., Hu, T. L. & Bu, X. H. (2009). Cryst. Growth Des. 9, 3904–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds