inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disilver(I) trinickel(II) hydrogenphos­phate bis­­(phosphate), Ag2Ni3(HPO4)(PO4)2

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abder_assani@yahoo.fr

(Received 11 April 2011; accepted 1 June 2011; online 11 June 2011)

The title compound, Ag2Ni3(HPO4)(PO4)2, has been synthesized by the hydro­thermal method. Its structure is formed by two types of chains running along the b axis. The first chain results from a linear and continuous succession of NiO6 octa­hedra linked to PO4 tetra­hedra by a common vertex. The second chain is built up from two adjacent edge-sharing octa­hedra (dimers) whose ends are linked to two PO4 tetra­hedra by a common edge. Those two types of chains are linked together by the phosphate groups to form polyhedral sheets parallel to the (001) plane. The three-dimensional framework delimits two types of hexa­gonal tunnels parallel to the a-axis direction, at (x, 1/2, 0) and (x, 0, 1/2), where the Ag atoms are located. Each silver cation is surrounded by eight O atoms. The same Ag+ coordination is found in other phosphates with the alluaudite structure, for example, AgMn3(PO4)(HPO4)2. Moreover, O—H⋯O hydrogen bonds link three PO4 tetra­hedra so as to build a three-dimensional network.

Related literature

For related applications, see: Viter & Nagornyi (2009[Viter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935-939.]); Gao & Gao (2005[Gao, D. & Gao, Q. (2005). Microporous Mesoporous Mater. 85, 365-373.]); Clearfield (1988[Clearfield, A. (1988). Chem. Rev. 88, 125-148.]); Trad et al. (2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]). For compounds with the same structure, see: Assani et al. (2010[Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74.], 2011[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5.]); Leroux et al. (1995[Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206—212.]); Ben Smail & Jouini (2002[Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61-i62.]).

Experimental

Crystal data
  • Ag2Ni3(HPO4)(PO4)2

  • Mr = 677.79

  • Orthorhombic, I m a 2

  • a = 12.9233 (3) Å

  • b = 6.5678 (2) Å

  • c = 10.6629 (3) Å

  • V = 905.04 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.98 mm−1

  • T = 296 K

  • 0.25 × 0.13 × 0.08 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (MULABS; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.382, Tmax = 0.471

  • 3762 measured reflections

  • 1125 independent reflections

  • 1103 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.06

  • 1125 reflections

  • 99 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.81 e Å−3

  • Δρmin = −1.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 467 Friedel pairs

  • Flack parameter: 0.55 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O6i 0.86 2.06 2.847 (6) 151
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As the improvement has arisen in the synthesis of a variety of interesting porous materials and open-framework structures, extensive studies are devoted to the metal phosphates which exhibit a rich structural diversity and have been widely studied as catalysts (Viter & Nagornyi, 2009; Gao & Gao, 2005), ion-exchangers (Clearfield, 1988) and as positive electrode in the lithium and sodium batteries (Trad et al. (2010)).

Within this family of compounds, the resulting anionic frameworks, generally constructed from the alternation of PO4 tetrahedra connected to metal cations in different coordinate geometry MOn (with n=4, 5 and 6), generate pores and channels offering suitable environment to accommodate different other cations. In our search for new phosphates with microporous framework, our most attention has been paid to the hydrothermal investigation of the A2O—MO—P2O5 systems, with A = monovalent cations and M = divalent cations. Accordingly, we have succeed, for instance, to isolate new form of silver zinc phosphate (γ-AgZnPO4) related to the ABW zeolite structure (Assani et al. 2010) while the silver magnesium phosphate, namely AgMg3(PO4)(HPO4)2, represent a new member of the well known alluaudite-like structure family (Assani et al. 2011). The present paper aims to develop the hydrothermal synthesis and the structural characterization of a new silver nickel phosphate, namely, Ag2Ni3(HPO4)(PO4)2.

The structure of this compound is formed by two types of chains running along the b axis. The first chain (Ni2P2HO9) is built up from Ni2 and P2 atoms in special Wyckoff position 4 b (m) of the space group Ima2. This chain results from linear and continuous succession of octahedron (Ni2O6) and P2O3OH tetrahedron which share a vertex. The second chain (Ni2P2O14)n is built up from two adjacent edge sharing octahedra ((Ni1)2O10 dimmers) whose ends are linked to two P1O4 tetrahedra by a common edge (Fig.1). Those chains are linked together by the phosphate groups to form polyhedral sheets parallel to the (0 0 1) plane as shown in Fig.2.

The three dimensional framework delimits two types of hexagonal tunnels running along the a direction, at x 1/2 0 and x 0 1/2 (Fig.3). The Ag2 atom is located at centre of tunnels, this explains the high value of its anisotropic displacement U11, whereas Ag1 is slightly shifted from this center (Wyckoff positions: Ag2 at 2a: 0, 0, z and Ag1 at 2 b: 1/4, y, z). However, each Ag+ ion is surrounded by 8 O atoms with different Ag–O distances. Indeed, the first coordination environment of Ag2+ is almost square planar with four short Ag2—O distances between 2.373 (4) and 2.421 (4) Å and the other four larger distances are in the range of 2.869 (4) to 3.133 (4) Å. A similar coordination surrounding Ag1+ is observed with Ag1—O bond lengths in the range of 2.537 (4)–2.616 (4) Å and the longest bonds are situated between 2.661 (4) and 2.963 (4) Å. The same coordination for this cation is found in other phosphate with alluaudite structure like AgMn3(PO4)(HPO4)2 (Leroux et al. (1995)) and AgNi3(PO4)(HPO4)2 (Ben Smail & Jouini (2002)).

Moreover, O—H···O hydrogen bondings link two adjacent P2O4 tetrahedra via a strong hydrogen bond O7–H7···O6 to two P1O4 tetrahedra through weak bonds O7–H7···O4 in the way to build an infinite three-dimensional network as shown in Table 1.

Related literature top

For related applications, see: Viter & Nagornyi (2009); Gao & Gao (2005); Clearfield (1988); Trad et al. (2010). For compounds with the same structure, see: Assani et al. (2010, 2011); Leroux et al. (1995); Ben Smail & Jouini (2002).

Experimental top

By means of hydrothermal synthesis, we have isolate a new silver nickel phosphate from the reaction mixture of silver nitrate (AgNO3; 0.1699 g), metallic nickel (Ni; 0.0881 g), 85%wt phosphoric acid (H3PO4; 0,10 ml) and water (12 ml). The hydrothermal treatment was conducted in a 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K for two days. After being filtered off, washed with deionized water and air dried, the reaction product consists of a monophasic green powder and some green parallelepipedic crystals corresponding to the title compound.

Refinement top

The structure is solved by direct method technique and refined by full-matrix least-squares using SHELXS97 and SHELXL97 program packages. The structure refinement in the centrosymmetric space group was unsuccessful. Infact the crystal is a racemic twinned with a refined ratio of 0.479 (26), which explains the ambiguity in the Flack parameter. The space group is not centro symmetric and the polar axis restraint is generated automatically by SHELXL program. Friedel opposites reflections are not merged. The O-bound H atom is initially located unambiguously in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle ther is refined in the riding model approximation with Uiso(H) set to 1.2Ueq(O). The highest and deepest hole residual peak in the final difference Fourier map are located at 0.72 Å and 0.62 Å, from Ag1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of Ag2Ni3(HPO4)(PO4)2 crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x, -y + 1, z; (ii) x + 1/2, -y + 1, z; (iii) x, -y + 3/2, z - 1/2; (iv) -x + 1/2, -y + 3/2, z - 1/2; (v) -x + 1/2, -y + 1/2, z - 1/2; (vi) -x, y + 1/2, z - 1/2; (vii) x + 1/2, y + 1/2, z - 1/2; (viii) x, -y + 1/2, z - 1/2; (ix) -x, -y, z; (x) -x, y + 1/2, z + 1/2; (xi) x, -y + 1/2, z + 1/2; (xii) -x + 1/2, y, z.
[Figure 2] Fig. 2. View along the b axis of polyhedral sheets parallel to the (0 0 1) plane.
[Figure 3] Fig. 3. A three-dimensional polyhedral view of the crystal structure of the Ag2Ni3(HPO4)(PO4)2, showing tunnels running along the a direction, at x, 1/2, 0 and x, 0, 1/2.
Disilver(I) trinickel(II) hydrogenphosphate bis(phosphate) top
Crystal data top
Ag2Ni3(HPO4)(PO4)2F(000) = 1280
Mr = 677.79Dx = 4.974 Mg m3
Orthorhombic, Ima2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 -2aCell parameters from 1125 reflections
a = 12.9233 (3) Åθ = 3.2–29.0°
b = 6.5678 (2) ŵ = 10.98 mm1
c = 10.6629 (3) ÅT = 296 K
V = 905.04 (4) Å3Prism, green
Z = 40.25 × 0.13 × 0.08 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1125 independent reflections
Radiation source: fine-focus sealed tube1103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 29.0°, θmin = 3.2°
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
h = 1314
Tmin = 0.382, Tmax = 0.471k = 1617
3762 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.7344P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1125 reflectionsΔρmax = 1.81 e Å3
99 parametersΔρmin = 1.12 e Å3
1 restraintAbsolute structure: Flack (1983), 467 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.55 (3)
Crystal data top
Ag2Ni3(HPO4)(PO4)2V = 905.04 (4) Å3
Mr = 677.79Z = 4
Orthorhombic, Ima2Mo Kα radiation
a = 12.9233 (3) ŵ = 10.98 mm1
b = 6.5678 (2) ÅT = 296 K
c = 10.6629 (3) Å0.25 × 0.13 × 0.08 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
1125 independent reflections
Absorption correction: multi-scan
(MULABS; Blessing, 1995)
1103 reflections with I > 2σ(I)
Tmin = 0.382, Tmax = 0.471Rint = 0.017
3762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.060Δρmax = 1.81 e Å3
S = 1.06Δρmin = 1.12 e Å3
1125 reflectionsAbsolute structure: Flack (1983), 467 Friedel pairs
99 parametersAbsolute structure parameter: 0.55 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.25000.60793 (8)0.01513 (7)0.02914 (18)
Ag20.00000.50000.03769 (5)0.0443 (2)
Ni10.13623 (4)0.24801 (10)0.20871 (7)0.00699 (13)
Ni20.00000.50000.45735 (7)0.00462 (15)
P10.07279 (7)0.25722 (19)0.20677 (13)0.00587 (19)
P20.25000.4102 (2)0.45653 (15)0.0042 (3)
O10.1343 (3)0.4456 (5)0.1739 (3)0.0091 (7)
O20.0044 (3)0.2070 (6)0.1000 (3)0.0056 (6)
O30.0036 (3)0.2785 (5)0.3204 (3)0.0072 (8)
O40.1494 (3)0.0786 (5)0.2360 (3)0.0096 (9)
O50.1543 (2)0.5443 (4)0.4552 (3)0.0085 (5)
O60.25000.2617 (8)0.3420 (5)0.0090 (12)
O70.25000.2692 (7)0.5756 (5)0.0064 (12)
H70.25000.30650.65290.008*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0491 (4)0.0158 (3)0.0225 (3)0.0000.0000.0048 (3)
Ag20.1145 (7)0.0083 (2)0.0101 (3)0.0020 (3)0.0000.000
Ni10.0058 (2)0.0092 (3)0.0060 (3)0.0005 (2)0.0005 (3)0.00135 (19)
Ni20.0052 (3)0.0049 (3)0.0037 (3)0.0006 (2)0.0000.000
P10.0064 (4)0.0064 (5)0.0047 (4)0.0001 (5)0.0008 (6)0.0004 (4)
P20.0043 (6)0.0054 (6)0.0030 (7)0.0000.0000.0012 (6)
O10.0086 (16)0.0100 (18)0.0088 (15)0.0003 (14)0.0017 (10)0.0010 (12)
O20.0044 (18)0.0088 (15)0.0035 (15)0.0002 (15)0.0010 (12)0.0029 (13)
O30.012 (2)0.0044 (17)0.0049 (15)0.0009 (15)0.0005 (12)0.0010 (12)
O40.010 (2)0.0023 (18)0.016 (2)0.0011 (13)0.0015 (11)0.0017 (11)
O50.0077 (12)0.0082 (12)0.0096 (15)0.0014 (10)0.0008 (13)0.0003 (12)
O60.005 (3)0.013 (3)0.009 (2)0.0000.0000.0007 (16)
O70.007 (3)0.007 (3)0.005 (2)0.0000.0000.0023 (16)
Geometric parameters (Å, º) top
Ag1—O1i2.534 (3)Ni2—O2xi2.041 (3)
Ag1—O1ii2.535 (3)Ni2—O3i2.062 (4)
Ag1—O5iii2.617 (3)Ni2—O32.062 (4)
Ag1—O5iv2.617 (3)P1—O11.511 (4)
Ag1—O7v2.659 (5)P1—O21.549 (4)
Ag1—O6v2.866 (5)P1—O41.566 (4)
Ag1—O4vi2.962 (3)P1—O31.569 (4)
Ag1—O4vii2.962 (3)P2—O51.518 (3)
Ag1—Ag23.3164 (2)P2—O5xii1.518 (3)
Ag2—O3vi2.375 (4)P2—O61.563 (6)
Ag2—O3viii2.375 (4)P2—O71.572 (5)
Ag2—O22.421 (4)O1—Ni1i2.046 (4)
Ag2—O2i2.421 (4)O1—O42.507 (5)
Ag2—O12.869 (4)O1—Ag1i2.534 (3)
Ag2—O1i2.869 (4)O2—Ni2xiii2.041 (3)
Ag2—O4viii3.133 (4)O3—Ag2xiv2.375 (4)
Ag2—O4vi3.133 (4)O4—Ni1ix2.172 (4)
Ni1—O1i2.046 (4)O4—Ag1xv2.962 (3)
Ni1—O7v2.047 (3)O4—Ag2xiv3.133 (4)
Ni1—O62.047 (4)O5—Ag1xvi2.617 (3)
Ni1—O22.079 (4)O6—Ni1xii2.047 (4)
Ni1—O32.097 (4)O6—Ag1xvii2.866 (5)
Ni1—O4ix2.172 (4)O7—Ni1xi2.047 (3)
Ni2—O5i2.015 (3)O7—Ni1xvii2.047 (3)
Ni2—O52.015 (3)O7—Ag1xvii2.659 (5)
Ni2—O2x2.041 (3)O7—H70.8600
O1i—Ag1—O1ii72.33 (16)O3viii—Ag2—O4vi67.92 (11)
O1i—Ag1—O5iii86.46 (10)O2—Ag2—O4vi125.71 (11)
O1ii—Ag1—O5iii119.74 (11)O2i—Ag2—O4vi110.51 (11)
O1i—Ag1—O5iv119.74 (11)O1—Ag2—O4vi177.43 (10)
O1ii—Ag1—O5iv86.46 (10)O1i—Ag2—O4vi102.27 (8)
O5iii—Ag1—O5iv56.41 (12)O4viii—Ag2—O4vi79.25 (12)
O1i—Ag1—O7v65.26 (11)Ag1i—Ag2—Ag1171.68 (3)
O1ii—Ag1—O7v65.26 (11)O1i—Ni1—O7v86.42 (17)
O5iii—Ag1—O7v148.99 (7)O1i—Ni1—O695.26 (18)
O5iv—Ag1—O7v148.99 (7)O7v—Ni1—O688.15 (12)
O1i—Ag1—O6v107.78 (12)O1i—Ni1—O290.92 (15)
O1ii—Ag1—O6v107.78 (12)O7v—Ni1—O2101.25 (13)
O5iii—Ag1—O6v132.46 (11)O6—Ni1—O2169.08 (15)
O5iv—Ag1—O6v132.46 (11)O1i—Ni1—O389.93 (14)
O7v—Ag1—O6v53.46 (12)O7v—Ni1—O3170.53 (14)
O1i—Ag1—O4vi116.39 (11)O6—Ni1—O3100.89 (14)
O1ii—Ag1—O4vi164.32 (10)O2—Ni1—O370.05 (11)
O5iii—Ag1—O4vi74.98 (10)O1i—Ni1—O4ix175.34 (13)
O5iv—Ag1—O4vi98.97 (10)O7v—Ni1—O4ix88.97 (17)
O7v—Ag1—O4vi105.40 (12)O6—Ni1—O4ix83.92 (17)
O6v—Ag1—O4vi57.90 (11)O2—Ni1—O4ix90.62 (14)
O1i—Ag1—O4vii164.32 (10)O3—Ni1—O4ix94.73 (14)
O1ii—Ag1—O4vii116.39 (11)O5i—Ni2—O5178.70 (19)
O5iii—Ag1—O4vii98.97 (10)O5i—Ni2—O2x94.43 (14)
O5iv—Ag1—O4vii74.98 (10)O5—Ni2—O2x86.54 (14)
O7v—Ag1—O4vii105.40 (12)O5i—Ni2—O2xi86.55 (14)
O6v—Ag1—O4vii57.90 (11)O5—Ni2—O2xi94.42 (14)
O4vi—Ag1—O4vii52.10 (14)O2x—Ni2—O2xi83.6 (2)
O3vi—Ag2—O3viii100.81 (18)O5i—Ni2—O3i94.10 (14)
O3vi—Ag2—O2177.72 (14)O5—Ni2—O3i84.97 (15)
O3viii—Ag2—O276.92 (10)O2x—Ni2—O3i93.29 (11)
O3vi—Ag2—O2i76.92 (10)O2xi—Ni2—O3i176.91 (18)
O3viii—Ag2—O2i177.72 (14)O5i—Ni2—O384.97 (15)
O2—Ag2—O2i105.35 (15)O5—Ni2—O394.10 (14)
O3vi—Ag2—O1125.84 (12)O2x—Ni2—O3176.91 (18)
O3viii—Ag2—O1114.65 (11)O2xi—Ni2—O393.29 (11)
O2—Ag2—O155.82 (11)O3i—Ni2—O389.8 (2)
O2i—Ag2—O166.92 (11)O1—P1—O2110.0 (2)
O3vi—Ag2—O1i114.65 (11)O1—P1—O4109.1 (2)
O3viii—Ag2—O1i125.84 (12)O2—P1—O4113.2 (2)
O2—Ag2—O1i66.92 (11)O1—P1—O3115.89 (19)
O2i—Ag2—O1i55.82 (11)O2—P1—O3100.46 (15)
O1—Ag2—O1i76.28 (13)O4—P1—O3108.1 (2)
O3vi—Ag2—O4viii67.92 (11)O5—P2—O5xii109.1 (2)
O3viii—Ag2—O4viii52.70 (12)O5—P2—O6110.77 (16)
O2—Ag2—O4viii110.51 (11)O5xii—P2—O6110.77 (16)
O2i—Ag2—O4viii125.71 (11)O5—P2—O7110.44 (16)
O1—Ag2—O4viii102.27 (8)O5xii—P2—O7110.44 (16)
O1i—Ag2—O4viii177.43 (10)O6—P2—O7105.3 (2)
O3vi—Ag2—O4vi52.70 (12)P2—O7—H7127.4
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1, z; (iii) x, y+3/2, z1/2; (iv) x+1/2, y+3/2, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x, y+1/2, z1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x, y+1/2, z1/2; (ix) x, y, z; (x) x, y+1/2, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y, z; (xiii) x, y1/2, z1/2; (xiv) x, y1/2, z+1/2; (xv) x1/2, y1/2, z+1/2; (xvi) x+1/2, y+3/2, z+1/2; (xvii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O6xvii0.862.062.847 (6)151
Symmetry code: (xvii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaAg2Ni3(HPO4)(PO4)2
Mr677.79
Crystal system, space groupOrthorhombic, Ima2
Temperature (K)296
a, b, c (Å)12.9233 (3), 6.5678 (2), 10.6629 (3)
V3)905.04 (4)
Z4
Radiation typeMo Kα
µ (mm1)10.98
Crystal size (mm)0.25 × 0.13 × 0.08
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(MULABS; Blessing, 1995)
Tmin, Tmax0.382, 0.471
No. of measured, independent and
observed [I > 2σ(I)] reflections
3762, 1125, 1103
Rint0.017
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.06
No. of reflections1125
No. of parameters99
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.81, 1.12
Absolute structureFlack (1983), 467 Friedel pairs
Absolute structure parameter0.55 (3)

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O6i0.862.062.847 (6)151.0
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i74.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBen Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClearfield, A. (1988). Chem. Rev. 88, 125–148.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, D. & Gao, Q. (2005). Microporous Mesoporous Mater. 85, 365–373.  CrossRef CAS Google Scholar
First citationLeroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995). J. Solid State Chem. 117, 206—212.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationViter, V. N. & Nagornyi, P. G. (2009). Russ. J. Appl. Chem. 82, 935–939.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds