metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium N-bromo-2-chloro­benzene­sulfonamidate sesquihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 May 2011; accepted 30 May 2011; online 11 June 2011)

In the title compound, Na+·C6H4BrClNO2S·1.5H2O, one water mol­ecule has crystallographically imposed twofold symmetry. The Na+ cation shows a pseudo-octa­hedral coordination provided by three O atoms of water mol­ecules and three sulfonyl O atoms of different N-bromo-2-chloro­benzene­sulfonamidate anions. The S—N distance of 1.579 (6) Å is consistent with an S=N double-bond character. The crystal structure is stabilized by O—H⋯Br, O—H⋯N and O—H⋯O hydrogen bonds.

Related literature

For background to the chemistry of N-haloaryl­sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]). For our study of the effect of substituents on the structures of N-haloaryl­sulfonamides, see: Gowda, Kožíšek et al. (2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1647-m1648.]); Gowda, Usha et al. (2007[Gowda, B. T., Usha, K. M., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1739-m1740.]). For related structures, see: George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]). For an isostructural compound, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o889.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C6H4BrClNO2S·1.5H2O

  • Mr = 319.53

  • Monoclinic, C 2/c

  • a = 11.200 (2) Å

  • b = 6.728 (1) Å

  • c = 28.304 (3) Å

  • β = 100.94 (1)°

  • V = 2094.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.41 mm−1

  • T = 293 K

  • 0.34 × 0.30 × 0.14 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD area detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.316, Tmax = 0.578

  • 7442 measured reflections

  • 2147 independent reflections

  • 1955 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.128

  • S = 1.25

  • 2147 reflections

  • 141 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.27 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯Br1i 0.82 (2) 2.70 (2) 3.518 (5) 171 (8)
O3—H32⋯N1 0.81 (2) 2.21 (5) 2.934 (7) 149 (8)
O3—H32⋯O2 0.81 (2) 2.51 (5) 3.232 (7) 148 (8)
O4—H41⋯N1ii 0.82 (2) 2.20 (3) 3.002 (7) 168 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of N-halo arylsulfonamides are of interest in synthetic, mechanistic, analytical and biological chemistry (Gowda & Shetty, 2004; Usha & Gowda, 2006). In the present work, as a part of exploring the substituent effects on the crystal structures of N-haloarylsulfonamidates, the structure of sodium N-bromo-2-chlorobenzenesulfonamidate (I) has been determined (Fig. 1). The structure of (I) resembles those of sodium N-bromo-benzenesulfonamidate (II) (Gowda, Usha et al., 2007), sodium i>N-bromo-4-chlorobenzenesulfonamidate (III) (Gowda, Kožíšek et al., 2007) and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986), and is isostructural with the previously reported N-chloro-2-chloro-benzenesulfonamidate (Gowda et al., 2010) (IV).

In the title compound, one water molecule (O4) has crystallographically imposed twofold axis. The sodium ion shows octahedral coordination by three O atoms of water molecules and by three sulfonyl O atoms of three different N-bromo-2-chloro-benzenesulfonamide anions.

There is no interaction between the N and Na atoms in the molecule. The S—N distance of N1—S1, 1.579 (6)Å is consistent with a S—N double bond and is in agreement with the observed values of 1.578 (4)Å in (II), 1.588 (2) Å in (IV), and N1—S1, 1.574 (5)Å and N2—S2 1.579 (4)Å in (III).

The crystal packing consists of a two-dimensional polymeric layers running parallel to the ac plane (Fig. 2). The molecular packing is stabilized by O3—H31···Br1, O3—H32···N1, O3—H32···O2 and O4—H41···N1 hydrogen bonds (Table 1).

Related literature top

For background to the chemistry of N-haloarylsulfonamides, see: Gowda & Shetty (2004); Usha & Gowda (2006). For our study of the effect of substituents on the structures of N-haloarylsulfonamides, see: Gowda, Kožíšek et al. (2007); Gowda, Usha et al. (2007). For related structures, see: George et al. (2000); Olmstead & Power (1986). For an isostructural compound, see: Gowda et al. (2010). [Please check added text]

Experimental top

The title compound was prepared according to the literature method (Usha & Gowda, 2006). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Prism like yellow single crystals of the title compound used in X-ray diffraction studies were obtained from slow evaporation of its aqueous solution at room temperature.

Refinement top

The H atoms bound to O3 were located in a difference Fourier map and later restrained to O—H = 0.82 (2) Å and H—H distance was restrained to 1.365 Å. The H atom bound to O4 was located in difference map and later restrained to O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atoms. The residual electron-density features are located in the region of S1. The highest peak and the deepest hole are at 1.43 and 1.09 Å from S1, respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the asymmetric unit extended to show the coordination geometry for the Na+ ion. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii (symmetry codes: (i) x + 1/2, y - 1/2, z; (ii) -x + 2, y, -z + 3/2; (iii) -x + 5/2, y - 1/2, -z + 3/2).
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonding shown as dashed lines.
Sodium N-bromo-2-chlorobenzenesulfonamidate sesquihydrate top
Crystal data top
Na+·C6H4BrClNO2S·1.5H2OF(000) = 1256
Mr = 319.53Dx = 2.027 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4107 reflections
a = 11.200 (2) Åθ = 2.9–27.8°
b = 6.728 (1) ŵ = 4.41 mm1
c = 28.304 (3) ÅT = 293 K
β = 100.94 (1)°Prism, yellow
V = 2094.0 (5) Å30.34 × 0.30 × 0.14 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD area detector
2147 independent reflections
Radiation source: fine-focus sealed tube1955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.316, Tmax = 0.578k = 87
7442 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0182P)2 + 43.7119P]
where P = (Fo2 + 2Fc2)/3
2147 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 2.27 e Å3
4 restraintsΔρmin = 1.19 e Å3
Crystal data top
Na+·C6H4BrClNO2S·1.5H2OV = 2094.0 (5) Å3
Mr = 319.53Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.200 (2) ŵ = 4.41 mm1
b = 6.728 (1) ÅT = 293 K
c = 28.304 (3) Å0.34 × 0.30 × 0.14 mm
β = 100.94 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD area detector
2147 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1955 reflections with I > 2σ(I)
Tmin = 0.316, Tmax = 0.578Rint = 0.018
7442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0494 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0182P)2 + 43.7119P]
where P = (Fo2 + 2Fc2)/3
2147 reflectionsΔρmax = 2.27 e Å3
141 parametersΔρmin = 1.19 e Å3
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8143 (5)0.3307 (9)0.6083 (2)0.0205 (12)
C20.6903 (6)0.3509 (11)0.5927 (2)0.0311 (14)
H20.63750.31010.61250.037*
C30.6437 (7)0.4309 (13)0.5480 (3)0.0433 (19)
H30.56000.44090.53770.052*
C40.7209 (8)0.4957 (12)0.5187 (3)0.044 (2)
H40.68920.55080.48880.053*
C50.8449 (8)0.4791 (11)0.5336 (3)0.0374 (17)
H50.89710.52430.51400.045*
C60.8919 (6)0.3942 (9)0.5782 (2)0.0249 (13)
Br10.88260 (6)0.14784 (10)0.62206 (2)0.0312 (2)
N10.9583 (5)0.0535 (8)0.66407 (18)0.0247 (11)
Na11.1437 (2)0.5132 (4)0.73529 (9)0.0303 (6)
O10.7549 (4)0.1730 (8)0.68272 (16)0.0324 (11)
O20.9370 (4)0.3782 (7)0.69654 (15)0.0286 (10)
O31.2055 (4)0.1890 (8)0.70471 (17)0.0335 (11)
H311.246 (5)0.241 (12)0.687 (2)0.040*
H321.1325 (19)0.199 (12)0.695 (2)0.040*
O41.00000.7830 (10)0.75000.0336 (16)
H410.979 (7)0.861 (9)0.728 (2)0.040*
S10.86584 (13)0.2281 (2)0.66713 (5)0.0198 (3)
Cl11.04842 (16)0.3824 (3)0.59503 (7)0.0414 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (3)0.017 (3)0.021 (3)0.001 (2)0.003 (2)0.002 (2)
C20.026 (3)0.033 (4)0.033 (3)0.004 (3)0.003 (3)0.000 (3)
C30.030 (4)0.050 (5)0.045 (4)0.004 (4)0.007 (3)0.009 (4)
C40.056 (5)0.043 (5)0.027 (4)0.005 (4)0.009 (3)0.010 (3)
C50.055 (5)0.032 (4)0.028 (4)0.001 (3)0.017 (3)0.005 (3)
C60.030 (3)0.020 (3)0.026 (3)0.000 (3)0.009 (3)0.002 (2)
Br10.0358 (4)0.0245 (3)0.0342 (4)0.0033 (3)0.0092 (3)0.0072 (3)
N10.022 (3)0.025 (3)0.025 (3)0.003 (2)0.001 (2)0.002 (2)
Na10.0299 (14)0.0312 (14)0.0320 (14)0.0047 (11)0.0114 (11)0.0007 (11)
O10.030 (2)0.040 (3)0.030 (2)0.001 (2)0.0131 (19)0.006 (2)
O20.033 (2)0.028 (2)0.023 (2)0.002 (2)0.0021 (18)0.0075 (19)
O30.027 (2)0.039 (3)0.034 (3)0.002 (2)0.006 (2)0.003 (2)
O40.044 (4)0.024 (4)0.030 (4)0.0000.000 (3)0.000
S10.0209 (7)0.0215 (7)0.0170 (7)0.0005 (6)0.0038 (5)0.0002 (6)
Cl10.0280 (8)0.0478 (11)0.0522 (11)0.0018 (8)0.0174 (8)0.0107 (9)
Geometric parameters (Å, º) top
C1—C21.382 (9)Na1—O3iii2.459 (5)
C1—C61.393 (8)Na1—O32.493 (6)
C1—S11.793 (6)Na1—O42.512 (6)
C2—C31.383 (10)Na1—O22.534 (5)
C2—H20.9300Na1—S1ii3.381 (3)
C3—C41.378 (12)Na1—H322.40 (9)
C3—H30.9300O1—S11.444 (5)
C4—C51.378 (11)O1—Na1iv2.371 (5)
C4—H40.9300O2—S11.448 (5)
C5—C61.396 (9)O2—Na1ii2.455 (5)
C5—H50.9300O3—Na1v2.459 (5)
C6—Cl11.729 (7)O3—H310.82 (2)
Br1—N11.893 (5)O3—H320.81 (2)
N1—S11.579 (6)O4—Na1ii2.512 (6)
Na1—O1i2.371 (5)O4—H410.82 (2)
Na1—O2ii2.455 (5)S1—Na1ii3.381 (3)
C2—C1—C6118.6 (6)O2ii—Na1—S1ii22.28 (11)
C2—C1—S1117.5 (5)O3iii—Na1—S1ii80.37 (14)
C6—C1—S1123.9 (5)O3—Na1—S1ii80.85 (13)
C1—C2—C3120.9 (6)O4—Na1—S1ii98.86 (11)
C1—C2—H2119.6O2—Na1—S1ii88.99 (13)
C3—C2—H2119.6O1i—Na1—H3294.9 (14)
C4—C3—C2120.2 (7)O2ii—Na1—H3293.2 (15)
C4—C3—H3119.9O3iii—Na1—H32136.1 (7)
C2—C3—H3119.9O3—Na1—H3219.0 (5)
C5—C4—C3120.1 (7)O4—Na1—H32137.7 (5)
C5—C4—H4120.0O2—Na1—H3261.1 (5)
C3—C4—H4120.0S1ii—Na1—H3283.3 (15)
C4—C5—C6119.7 (7)S1—O1—Na1iv153.3 (3)
C4—C5—H5120.2S1—O2—Na1ii117.7 (3)
C6—C5—H5120.2S1—O2—Na1149.0 (3)
C1—C6—C5120.5 (6)Na1ii—O2—Na188.25 (17)
C1—C6—Cl1122.4 (5)Na1v—O3—Na1112.4 (2)
C5—C6—Cl1117.1 (5)Na1v—O3—H31104 (5)
S1—N1—Br1110.3 (3)Na1—O3—H3194 (6)
O1i—Na1—O2ii167.5 (2)Na1v—O3—H32142 (5)
O1i—Na1—O3iii80.89 (18)Na1—O3—H3274 (6)
O2ii—Na1—O3iii86.70 (18)H31—O3—H32112 (4)
O1i—Na1—O388.03 (19)Na1—O4—Na1ii87.5 (3)
O2ii—Na1—O396.71 (18)Na1—O4—H41116 (6)
O3iii—Na1—O3117.45 (15)Na1ii—O4—H41119 (6)
O1i—Na1—O4101.87 (19)O1—S1—O2114.5 (3)
O2ii—Na1—O478.11 (16)O1—S1—N1115.9 (3)
O3iii—Na1—O485.18 (16)O2—S1—N1104.8 (3)
O3—Na1—O4156.70 (19)O1—S1—C1103.8 (3)
O1i—Na1—O2115.86 (19)O2—S1—C1108.1 (3)
O2ii—Na1—O276.42 (19)N1—S1—C1109.5 (3)
O3iii—Na1—O2157.31 (19)O1—S1—Na1ii74.5 (2)
O3—Na1—O280.02 (17)N1—S1—Na1ii126.1 (2)
O4—Na1—O276.68 (15)C1—S1—Na1ii119.0 (2)
O1i—Na1—S1ii150.64 (16)
C6—C1—C2—C30.5 (10)O1i—Na1—O4—Na1ii152.81 (18)
S1—C1—C2—C3179.3 (6)O2ii—Na1—O4—Na1ii39.93 (12)
C1—C2—C3—C41.4 (12)O3iii—Na1—O4—Na1ii127.57 (16)
C2—C3—C4—C50.7 (13)O3—Na1—O4—Na1ii39.3 (4)
C3—C4—C5—C60.8 (12)O2—Na1—O4—Na1ii38.72 (11)
C2—C1—C6—C51.0 (10)S1ii—Na1—O4—Na1ii48.11 (6)
S1—C1—C6—C5177.7 (5)Na1iv—O1—S1—O273.2 (8)
C2—C1—C6—Cl1178.1 (5)Na1iv—O1—S1—N149.0 (8)
S1—C1—C6—Cl10.6 (8)Na1iv—O1—S1—C1169.1 (7)
C4—C5—C6—C11.6 (11)Na1iv—O1—S1—Na1ii74.1 (7)
C4—C5—C6—Cl1178.9 (6)Na1ii—O2—S1—O11.2 (4)
O1i—Na1—O2—S174.9 (6)Na1—O2—S1—O1142.6 (5)
O2ii—Na1—O2—S1107.4 (5)Na1ii—O2—S1—N1129.4 (3)
O3iii—Na1—O2—S1150.4 (5)Na1—O2—S1—N114.4 (6)
O3—Na1—O2—S18.0 (6)Na1ii—O2—S1—C1113.9 (3)
O4—Na1—O2—S1171.8 (6)Na1—O2—S1—C1102.3 (6)
S1ii—Na1—O2—S188.9 (6)Na1—O2—S1—Na1ii143.8 (7)
O1i—Na1—O2—Na1ii136.66 (17)Br1—N1—S1—O157.6 (4)
O2ii—Na1—O2—Na1ii41.0 (2)Br1—N1—S1—O2175.1 (3)
O3iii—Na1—O2—Na1ii2.0 (6)Br1—N1—S1—C159.4 (4)
O3—Na1—O2—Na1ii140.47 (18)Br1—N1—S1—Na1ii146.92 (16)
O4—Na1—O2—Na1ii39.77 (14)C2—C1—S1—O15.0 (6)
S1ii—Na1—O2—Na1ii59.58 (15)C6—C1—S1—O1176.3 (5)
O1i—Na1—O3—Na1v108.3 (2)C2—C1—S1—O2117.0 (5)
O2ii—Na1—O3—Na1v60.1 (2)C6—C1—S1—O261.7 (6)
O3iii—Na1—O3—Na1v29.7 (2)C2—C1—S1—N1129.4 (5)
O4—Na1—O3—Na1v135.6 (4)C6—C1—S1—N151.9 (6)
O2—Na1—O3—Na1v135.0 (2)C2—C1—S1—Na1ii74.7 (5)
S1ii—Na1—O3—Na1v44.40 (17)C6—C1—S1—Na1ii103.9 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+2, y, z+3/2; (iii) x+5/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z; (v) x+5/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Br1i0.82 (2)2.70 (2)3.518 (5)171 (8)
O3—H32···N10.81 (2)2.21 (5)2.934 (7)149 (8)
O3—H32···O20.81 (2)2.51 (5)3.232 (7)148 (8)
O4—H41···N1vi0.82 (2)2.20 (3)3.002 (7)168 (8)
Symmetry codes: (i) x+1/2, y1/2, z; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaNa+·C6H4BrClNO2S·1.5H2O
Mr319.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.200 (2), 6.728 (1), 28.304 (3)
β (°) 100.94 (1)
V3)2094.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)4.41
Crystal size (mm)0.34 × 0.30 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD area detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.316, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
7442, 2147, 1955
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.25
No. of reflections2147
No. of parameters141
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0182P)2 + 43.7119P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.27, 1.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···Br1i0.82 (2)2.70 (2)3.518 (5)171 (8)
O3—H32···N10.81 (2)2.21 (5)2.934 (7)149 (8)
O3—H32···O20.81 (2)2.51 (5)3.232 (7)148 (8)
O4—H41···N1ii0.82 (2)2.20 (3)3.002 (7)168 (8)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y1, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for the grant under theUGC-BSR one time grant to Faculty/Professors.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals
First citationGowda, B. T., Foro, S., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o889.  Web of Science CrossRef IUCr Journals
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1647–m1648.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS
First citationGowda, B. T., Usha, K. M., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, m1739–m1740.  Web of Science CSD CrossRef IUCr Journals
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds