organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Morpholin-4-yl)-3-(tri­fluoro­meth­yl)­benzo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology – Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 24 May 2011; accepted 30 May 2011; online 11 June 2011)

In the title benzonitrile compound, C12H11F3N2O, an intra­molecular C—H⋯F hydrogen bond generates an S(7) ring motif. The trifluoro­methyl group is disordered over two orientations with a refined occupancy ratio of 0.549 (16):0.451 (16). The morpholine ring adopts a chair conformation. The benzene ring and mean plane of the morpholine ring make a dihedral angle of 58.04 (10)° with each other. In the crystal, mol­ecules are connected by inter­molecular C—H⋯F and C—H⋯O inter­actions to form R22(8) ring motifs. These inter­actions also link the mol­ecules into chains parallel to the [10[\overline{1}]] direction.

Related literature

For general background and applications of materials related to the title compound, see: Raparti et al. (2009[Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954-3960.]). For the synthesis of fluvoxamine, see: Schareina et al. (2004[Schareina, T., Zapf, A. & Bellar, M. (2004). J. Organomet. Chem. 689, 4576-4583.]). For synthesis of the title compound, see: Kleemann et al. (2001[Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2001). Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed. Stuttgart, New York: Georg Thieme Verlag.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For definition of puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11F3N2O

  • Mr = 256.23

  • Monoclinic, P 21 /n

  • a = 12.7003 (12) Å

  • b = 6.8990 (7) Å

  • c = 13.3484 (13) Å

  • β = 91.668 (2)°

  • V = 1169.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.85 × 0.25 × 0.12 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.985

  • 11929 measured reflections

  • 3382 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.07

  • 3382 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯F3i 0.97 2.49 3.242 (5) 135
C4—H4A⋯F1 0.97 2.23 2.909 (6) 126
C9—H9A⋯O1ii 0.93 2.47 3.3588 (16) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzonitriles are of considerable interest in organic chemistry as an integral part of dyes, herbicides, agrochemicals, pharmaceuticals, and natural products. The nitrile group also serves as an important intermediate for a multitude of possible transformations into other functional groups and morpholine ring is important for antimicrobial activity (Raparti et al., 2009). As an example, in the synthesis of Fluvoxamine (Schareina et al., 2004), 4-(trifluoromethyl) benzonitrile, which is available from 4-chlorobenzotrifluoride by nickel-catalyzed cyanation on ton-scale, serves as an intermediate. Benzonitriles themselves are also of significant interest as substructures in biologically active agents. Bicalutamid and fadrozole are examples of pharmaceuticals containing an aromatic nitrile as part of the molecule. Prompted by these observations, we synthesized the title compound for studying its crystal structure.

In the title benzonitriles compound, an intramolecular C4—H4A···F1 hydrogen bond (Table 1) generates a seven-membered ring, producing an S(7) hydrogen bond ring motif (Fig. 1; Bernstein et al., 1995). The trifluoromethyl group (F1–F3) is disordered over two orientations with refined occupancies of 0.549 (16) and 0.451 (16). The morpholine (C1–C4/N1/O1) ring adopts a chair conformation. The puckering parameters are Q = 0.5731 (18) Å, θ = 178.85 (17)°, ϕ = 322 (5)° (Cremer & Pople, 1975). The benzene ring (C6–C10) and mean plane of the morpholine ring (C1–C4/O1/N1) make a dihedral angle of 58.04 (10)° with each other. The bond lengths (Allen et al., 1987) and angles in the title of compound show the normal values.

In the crystal packing (Fig. 2), the molecules are connected by intermolecular interactions C2—H2B···F3 and C9—H9A···O1 hydrogen bonds to form R22(8) ring motifs. These interactions also link the molecules into chains parallel to the [1 0 1] direction.

Related literature top

For general background and applications of materials related to the title compound, see: Raparti et al. (2009). For the synthesis of fluvoxamine, see: Schareina et al. (2004). For synthesis of the title compound, see: Klemann et al. (2001). For graph-set theory, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For definition of puckering parameters, see: Cremer & Pople (1975).

Experimental top

4-Fluoro-3-(trifluoromethyl)benzonitrile (3 g, 0.0158 mol) was taken in acetonitrile (50 ml) at 298–299 K under nitrogen atmosphere. Potassium carbonate (2.6 g, 0.019 mol) and morpholine (1.65 g, 0.019 mol) were added at the same temperature. The reaction mixture was heated to 353 K for 12 h. The reaction mixture was cooled to 298–299 K, concentrated under vacuum and the crude product was diluted with water (100 ml) and extracted with ethyl acetate (2x100 ml). The ethyl acetate layer was further washed with water (100 ml), brine solution, dried over Na2SO4 and concentrated to get the desired product as colourless crystalline solid, recrystallised from ethanol (Klemann et al., 2001). Yield 3.8 g (94%), M.p.: 408–410 K.

Refinement top

Atoms F1, F2 and F3 are disordered over two sets of sites with a refined occupancy ratio of 0.549 (16):0.451 (16). All the H atoms were placed in calculated positions with C–H = 0.93 or 0.97 Å, The Uiso values were constrained to be 1.2Ueq of the carrier atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing, viewed along the b axis, showing the chains parallel to the [1 0 1] direction. Hydrogen bonds are shown as dashed lines.
4-(Morpholin-4-yl)-3-(trifluoromethyl)benzonitrile top
Crystal data top
C12H11F3N2OF(000) = 528
Mr = 256.23Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3536 reflections
a = 12.7003 (12) Åθ = 3.1–29.3°
b = 6.8990 (7) ŵ = 0.13 mm1
c = 13.3484 (13) ÅT = 296 K
β = 91.668 (2)°Plate, colourless
V = 1169.1 (2) Å30.85 × 0.25 × 0.12 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3382 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1517
Tmin = 0.899, Tmax = 0.985k = 99
11929 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1831P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3382 reflectionsΔρmax = 0.25 e Å3
192 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C12H11F3N2OV = 1169.1 (2) Å3
Mr = 256.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7003 (12) ŵ = 0.13 mm1
b = 6.8990 (7) ÅT = 296 K
c = 13.3484 (13) Å0.85 × 0.25 × 0.12 mm
β = 91.668 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3382 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2399 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.985Rint = 0.021
11929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3382 reflectionsΔρmin = 0.16 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.7836 (5)0.4513 (6)0.0784 (4)0.0736 (12)0.549 (16)
F20.8776 (5)0.2468 (9)0.1535 (5)0.0737 (13)0.549 (16)
F30.7289 (6)0.3126 (14)0.2091 (5)0.102 (2)0.549 (16)
F1B0.7282 (13)0.4501 (8)0.1030 (7)0.110 (3)0.451 (16)
F2B0.8734 (6)0.301 (2)0.1241 (10)0.107 (3)0.451 (16)
F3B0.7507 (7)0.2605 (15)0.2204 (4)0.090 (2)0.451 (16)
O10.98647 (10)0.34879 (18)0.21269 (9)0.0691 (4)
N10.85532 (8)0.17086 (16)0.07037 (8)0.0412 (3)
N20.45173 (11)0.3350 (2)0.12877 (13)0.0742 (4)
C10.92779 (15)0.0579 (2)0.12999 (16)0.0747 (6)
H1A0.89180.01160.19050.090*
H1B0.95270.05360.09190.090*
C21.01990 (16)0.1842 (3)0.15715 (18)0.0829 (7)
H2A1.05700.22600.09640.099*
H2B1.06850.10930.19640.099*
C30.91524 (13)0.4581 (2)0.15705 (15)0.0675 (5)
H3A0.89160.56870.19650.081*
H3B0.95100.50670.09700.081*
C40.82075 (12)0.3401 (2)0.12777 (13)0.0598 (4)
H4A0.77460.41890.08780.072*
H4B0.78160.29900.18750.072*
C50.77145 (9)0.06434 (17)0.02829 (8)0.0364 (3)
C60.72846 (11)0.0982 (2)0.07585 (10)0.0487 (3)
H6A0.75620.13900.13610.058*
C70.64609 (11)0.2008 (2)0.03650 (11)0.0505 (3)
H7A0.61870.30870.06990.061*
C80.60446 (10)0.14135 (19)0.05332 (10)0.0418 (3)
C90.64620 (9)0.01808 (19)0.10331 (9)0.0394 (3)
H9A0.61820.05710.16370.047*
C100.72972 (9)0.12021 (17)0.06375 (9)0.0360 (3)
C110.77589 (11)0.2827 (2)0.12573 (11)0.0481 (3)
C120.51905 (11)0.2485 (2)0.09623 (11)0.0517 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.100 (3)0.0403 (11)0.0802 (18)0.0085 (14)0.0012 (17)0.0078 (10)
F20.053 (2)0.0799 (19)0.086 (3)0.0015 (17)0.020 (2)0.0182 (16)
F30.085 (2)0.134 (5)0.090 (4)0.050 (2)0.059 (2)0.073 (3)
F1B0.175 (8)0.0450 (17)0.107 (4)0.028 (3)0.034 (4)0.021 (2)
F2B0.058 (3)0.148 (7)0.118 (6)0.054 (4)0.036 (3)0.083 (5)
F3B0.133 (5)0.104 (4)0.0318 (17)0.054 (3)0.004 (2)0.013 (2)
O10.0764 (8)0.0712 (7)0.0617 (7)0.0107 (6)0.0354 (6)0.0108 (6)
N10.0425 (5)0.0427 (5)0.0392 (5)0.0004 (4)0.0159 (4)0.0028 (4)
N20.0601 (8)0.0777 (10)0.0852 (11)0.0232 (7)0.0116 (7)0.0158 (8)
C10.0833 (12)0.0516 (9)0.0924 (13)0.0031 (8)0.0588 (10)0.0010 (8)
C20.0725 (11)0.0692 (11)0.1103 (16)0.0081 (9)0.0591 (11)0.0188 (11)
C30.0664 (10)0.0548 (9)0.0829 (12)0.0047 (7)0.0286 (9)0.0168 (8)
C40.0516 (8)0.0597 (9)0.0687 (10)0.0008 (7)0.0136 (7)0.0229 (7)
C50.0377 (6)0.0381 (6)0.0337 (6)0.0008 (5)0.0066 (4)0.0022 (5)
C60.0578 (8)0.0498 (7)0.0391 (7)0.0086 (6)0.0120 (6)0.0086 (5)
C70.0559 (8)0.0448 (7)0.0508 (8)0.0115 (6)0.0041 (6)0.0066 (6)
C80.0362 (6)0.0433 (6)0.0461 (7)0.0038 (5)0.0028 (5)0.0078 (5)
C90.0361 (6)0.0456 (6)0.0368 (6)0.0005 (5)0.0074 (4)0.0028 (5)
C100.0356 (6)0.0380 (6)0.0348 (6)0.0006 (4)0.0058 (4)0.0012 (5)
C110.0506 (7)0.0496 (7)0.0447 (7)0.0063 (6)0.0117 (6)0.0101 (6)
C120.0448 (7)0.0528 (8)0.0577 (8)0.0089 (6)0.0026 (6)0.0081 (6)
Geometric parameters (Å, º) top
F1—C111.328 (4)C3—C41.511 (2)
F2—C111.357 (6)C3—H3A0.9700
F3—C111.294 (5)C3—H3B0.9700
F1B—C111.335 (5)C4—H4A0.9700
F2B—C111.245 (7)C4—H4B0.9700
F3B—C111.321 (6)C5—C61.3925 (18)
O1—C31.4064 (19)C5—C101.4060 (16)
O1—C21.415 (2)C6—C71.3794 (18)
N1—C51.4230 (14)C6—H6A0.9300
N1—C41.4573 (18)C7—C81.3863 (19)
N1—C11.4597 (17)C7—H7A0.9300
N2—C121.1388 (18)C8—C91.3840 (18)
C1—C21.511 (2)C8—C121.4449 (18)
C1—H1A0.9700C9—C101.3902 (16)
C1—H1B0.9700C9—H9A0.9300
C2—H2A0.9700C10—C111.5023 (18)
C2—H2B0.9700
C3—O1—C2109.97 (12)C5—C6—H6A119.0
C5—N1—C4113.82 (10)C6—C7—C8119.37 (12)
C5—N1—C1115.51 (11)C6—C7—H7A120.3
C4—N1—C1109.04 (12)C8—C7—H7A120.3
N1—C1—C2109.13 (14)C9—C8—C7120.10 (11)
N1—C1—H1A109.9C9—C8—C12119.81 (12)
C2—C1—H1A109.9C7—C8—C12120.08 (12)
N1—C1—H1B109.9C8—C9—C10120.36 (11)
C2—C1—H1B109.9C8—C9—H9A119.8
H1A—C1—H1B108.3C10—C9—H9A119.8
O1—C2—C1111.47 (17)C9—C10—C5120.27 (11)
O1—C2—H2A109.3C9—C10—C11117.32 (11)
C1—C2—H2A109.3C5—C10—C11122.33 (11)
O1—C2—H2B109.3F2B—C11—F3118.8 (5)
C1—C2—H2B109.3F2B—C11—F3B107.3 (6)
H2A—C2—H2B108.0F2B—C11—F179.4 (6)
O1—C3—C4112.06 (14)F3—C11—F1108.2 (4)
O1—C3—H3A109.2F3B—C11—F1125.4 (4)
C4—C3—H3A109.2F2B—C11—F1B110.7 (4)
O1—C3—H3B109.2F3—C11—F1B80.8 (4)
C4—C3—H3B109.2F3B—C11—F1B101.4 (5)
H3A—C3—H3B107.9F3—C11—F2104.7 (4)
N1—C4—C3109.77 (13)F3B—C11—F288.5 (5)
N1—C4—H4A109.7F1—C11—F2101.9 (3)
C3—C4—H4A109.7F1B—C11—F2129.9 (6)
N1—C4—H4B109.7F2B—C11—C10116.0 (4)
C3—C4—H4B109.7F3—C11—C10114.2 (3)
H4A—C4—H4B108.2F3B—C11—C10109.8 (4)
C6—C5—C10117.81 (11)F1—C11—C10115.1 (2)
C6—C5—N1121.60 (11)F1B—C11—C10110.7 (3)
C10—C5—N1120.59 (11)F2—C11—C10111.6 (3)
C7—C6—C5122.07 (12)N2—C12—C8178.91 (18)
C7—C6—H6A119.0
C5—N1—C1—C2172.23 (15)C8—C9—C10—C51.04 (18)
C4—N1—C1—C258.1 (2)C8—C9—C10—C11175.72 (12)
C3—O1—C2—C158.5 (2)C6—C5—C10—C91.85 (18)
N1—C1—C2—O159.4 (2)N1—C5—C10—C9178.54 (11)
C2—O1—C3—C457.5 (2)C6—C5—C10—C11174.75 (12)
C5—N1—C4—C3172.24 (13)N1—C5—C10—C114.86 (18)
C1—N1—C4—C357.19 (18)C9—C10—C11—F2B141.6 (9)
O1—C3—C4—N157.6 (2)C5—C10—C11—F2B35.0 (9)
C4—N1—C5—C696.34 (15)C9—C10—C11—F32.1 (6)
C1—N1—C5—C630.95 (19)C5—C10—C11—F3178.8 (5)
C4—N1—C5—C1084.08 (15)C9—C10—C11—F3B19.9 (5)
C1—N1—C5—C10148.64 (14)C5—C10—C11—F3B156.8 (5)
C10—C5—C6—C71.4 (2)C9—C10—C11—F1128.2 (4)
N1—C5—C6—C7178.98 (13)C5—C10—C11—F155.1 (4)
C5—C6—C7—C80.1 (2)C9—C10—C11—F1B91.2 (8)
C6—C7—C8—C90.7 (2)C5—C10—C11—F1B92.2 (8)
C6—C7—C8—C12179.22 (13)C9—C10—C11—F2116.3 (3)
C7—C8—C9—C100.27 (19)C5—C10—C11—F260.4 (3)
C12—C8—C9—C10178.77 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···F3i0.972.493.242 (5)135
C4—H4A···F10.972.232.909 (6)126
C9—H9A···O1ii0.932.473.3588 (16)160
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11F3N2O
Mr256.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.7003 (12), 6.8990 (7), 13.3484 (13)
β (°) 91.668 (2)
V3)1169.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.85 × 0.25 × 0.12
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.899, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11929, 3382, 2399
Rint0.021
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.07
No. of reflections3382
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···F3i0.972.493.242 (5)134.6
C4—H4A···F10.97002.23002.909 (6)126.00
C9—H9A···O1ii0.932.473.3588 (16)159.7
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

H-KF and SIJA thank Universiti Sains Malaysia for Research University Grants (No.1001/PFIZIK/811160 and No.1001/PFIZIK/811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a 'Young Scientist' award. RK thanks the Defence Research and Development Organization (DRDO), New Delhi, India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2001). Pharmaceutical Substances: Syntheses, Patents, Applications, 4th ed. Stuttgart, New York: Georg Thieme Verlag.  Google Scholar
First citationRaparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954–3960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchareina, T., Zapf, A. & Bellar, M. (2004). J. Organomet. Chem. 689, 4576–4583.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds