organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-2-oxo­ethyl 4-chloro­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bOrganic Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cDepartment of Physics, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 May 2011; accepted 14 June 2011; online 18 June 2011)

The asymmetric unit of the title compound, C15H10BrClO3, consists of three crystallographically independent mol­ecules. The dihedral angles between the benzene rings in the three mol­ecules are 68.8 (2), 0.7 (3) and 66.1 (2)°. In the crystal, the three independent mol­ecules are inter­connected by C—H⋯O hydrogen bonds, leading to isolated trimers.

Related literature

For background to phenacyl benzoate derivatives, see: Huang et al. (1996[Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.]); Gandhi et al. (1995[Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308.]); Sheehan & Umezaw (1973[Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.]); Ruzicka et al. (2002[Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.]); Litera et al. (2006[Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.]); Rather & Reid (1919[Rather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75-83.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1528.],b[Fun, H.-K., Asik, S. I. J., Kumar, R., Isloor, A. M. & Shivananda, K. N. (2011b). Acta Cryst. E67, o1600.],c[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011c). Acta Cryst. E67, o1529.]). For the preparation, see: Kelly & Howard (1932[Kelly, L. T. & Howard, H. W. (1932). J. Am. Chem. Soc. 54, 4383-4385.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClO3

  • Mr = 353.59

  • Monoclinic, P 21

  • a = 17.1061 (11) Å

  • b = 5.3062 (4) Å

  • c = 24.0376 (16) Å

  • β = 101.502 (1)°

  • V = 2138.0 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 297 K

  • 0.41 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.364, Tmax = 0.657

  • 18463 measured reflections

  • 8890 independent reflections

  • 5931 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.142

  • S = 1.04

  • 8890 reflections

  • 541 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3590 Friedel pairs

  • Flack parameter: 0.065 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5AA⋯O3B 0.93 2.59 3.227 (7) 126
C5B—H5BA⋯O1A 0.93 2.48 3.217 (7) 136
C15B—H15B⋯O1C 0.93 2.59 3.254 (7) 129

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenacyl benzoates derivatives are very important in identification of organic acids (Rather & Reid, 1919). These compounds undergo photolysis in neutral and mild conditions (Sheehan & Umezaw, 1973; Ruzicka et al., 2002; Litera et al., 2006) and find applications in the field of synthetic chemistry for the synthesis of oxazoles, imidazoles (Huang et al., 1996), benzoxazepine (Gandhi et al., 1995). We hereby report the crystal structure of 2-(4-bromophenyl)-2-oxoethyl 4-chlorobenzoate of potential commercial importance.

The asymmetric unit of title compound consists of three crystallographically independent molecules, A, B and C (Fig. 1). The dihedral angles between the two terminal phenyl rings for each molecules being 68.8 (2), 0.7 (3) and 66.1 (2)°, respectively, show that molecule A and C are in similar conformation. The geometic parameters are comparable to those previously reported structures (Fun et al., 2011a,b,c). The three independent molecules are interconnected by C5A—H5AA···O3B, C5B—H5BA···O1A and C15B—H15B···O1C hydrogen bonds (Fig. 1, Table 1). In the crystal structure, the molecules are arranged into columns (Fig. 2) parallel to the b axis.

Related literature top

For background to phenacyl benzoate derivatives, see: Huang et al. (1996); Gandhi et al. (1995); Sheehan & Umezaw (1973); Ruzicka et al. (2002); Litera et al. (2006); Rather & Reid (1919). For related structures, see: Fun et al. (2011a,b,c). For the experimental procedure [do you mean the preparation?], see: Kelly & Howard (1932).

Experimental top

A mixture of 4-chlorobenzoic acid (1.0 g, 0.0063 mol) sodium carbonate (0.744 g, 0.0070 mol) and 2-bromo-1-phenylethanon (1.94 g, 0.0070 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-bromophenyl)-2-oxoethyl 4-chlorobenzoate separated. The compound was collected by filtration and re-crystallized from ethanol. Yield: 2.18 g, 96.88%, M. p.: 400–401 K (Kelly & Howard, 1983).

Refinement top

All hydrogen atoms were positioned geomatrically [C–H = 0.93 or 0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 Ueq(C). The presence of pseudosymmetry in the structure suggests the higher symmetry space group P21/c, but attempts to refine the structure in this space group resulted in much higher R and wR values and chemically incorrect structure. A total of 3590 Friedel pairs were used to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability ellipsoids for non-H atoms. Hydrogen bonds (dashed lines) are shown.
[Figure 2] Fig. 2. Crystal structure of title compound, showing molecules arranged into columns parallel to the b axis. Hydrogen bonds (dashed lines) are shown.
2-(4-Bromophenyl)-2-oxoethyl 4-chlorobenzoate top
Crystal data top
C15H10BrClO3F(000) = 1056
Mr = 353.59Dx = 1.648 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4899 reflections
a = 17.1061 (11) Åθ = 2.3–26.1°
b = 5.3062 (4) ŵ = 3.07 mm1
c = 24.0376 (16) ÅT = 297 K
β = 101.502 (1)°Block, colourless
V = 2138.0 (3) Å30.41 × 0.19 × 0.15 mm
Z = 6
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8890 independent reflections
Radiation source: fine-focus sealed tube5931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2221
Tmin = 0.364, Tmax = 0.657k = 66
18463 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.4681P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8890 reflectionsΔρmax = 0.67 e Å3
541 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983), 3590 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.065 (10)
Crystal data top
C15H10BrClO3V = 2138.0 (3) Å3
Mr = 353.59Z = 6
Monoclinic, P21Mo Kα radiation
a = 17.1061 (11) ŵ = 3.07 mm1
b = 5.3062 (4) ÅT = 297 K
c = 24.0376 (16) Å0.41 × 0.19 × 0.15 mm
β = 101.502 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
8890 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5931 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.657Rint = 0.021
18463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.142Δρmax = 0.67 e Å3
S = 1.04Δρmin = 0.54 e Å3
8890 reflectionsAbsolute structure: Flack (1983), 3590 Friedel pairs
541 parametersAbsolute structure parameter: 0.065 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.67824 (3)1.30681 (17)0.56131 (3)0.0834 (2)
Cl1A0.15600 (8)0.7707 (5)0.61298 (7)0.0905 (6)
O1A0.3290 (2)0.9241 (10)0.63191 (17)0.0841 (16)
O2A0.1988 (2)1.1811 (8)0.58442 (16)0.0632 (10)
O3A0.1936 (2)0.8415 (10)0.52826 (15)0.0736 (12)
C1A0.4376 (3)1.3623 (11)0.56106 (19)0.0501 (12)
H1AA0.39591.46760.54470.060*
C2A0.5157 (3)1.4119 (11)0.55351 (19)0.0526 (13)
H2AA0.52651.55310.53340.063*
C3A0.5759 (3)1.2477 (12)0.57638 (18)0.0502 (13)
C4A0.5622 (3)1.0413 (15)0.60918 (18)0.0556 (12)
H4AA0.60380.93480.62520.067*
C5A0.4865 (3)0.9992 (11)0.61718 (18)0.0503 (12)
H5AA0.47710.86280.63920.060*
C6A0.4229 (3)1.1541 (10)0.59333 (17)0.0462 (12)
C7A0.3413 (3)1.0949 (12)0.60142 (19)0.0533 (15)
C8A0.2734 (3)1.2495 (13)0.5706 (2)0.0622 (15)
H8AA0.28391.42590.57980.075*
H8AB0.26981.22970.53000.075*
C9A0.1655 (3)0.9666 (12)0.5602 (2)0.0533 (15)
C10A0.0870 (3)0.9183 (11)0.57661 (18)0.0471 (12)
C11A0.0551 (3)1.0787 (13)0.61134 (18)0.0536 (13)
H11A0.08441.21800.62710.064*
C12A0.0192 (3)1.0367 (17)0.6231 (2)0.0652 (14)
H12A0.04051.14650.64640.078*
C13A0.0615 (3)0.8289 (14)0.5998 (2)0.0604 (15)
C14A0.0303 (3)0.6605 (12)0.56479 (19)0.0569 (14)
H14A0.05920.52000.54930.068*
C15A0.0445 (3)0.7093 (13)0.55400 (19)0.0548 (14)
H15A0.06650.59960.53120.066*
Br1B0.06535 (3)0.5564 (2)0.73157 (2)0.0802 (2)
Cl1B0.92955 (6)0.0329 (3)0.77621 (5)0.0628 (4)
O1B0.4359 (2)0.0185 (11)0.78999 (16)0.0786 (11)
O2B0.54903 (19)0.2829 (8)0.75497 (14)0.0627 (10)
O3B0.5851 (2)0.5857 (10)0.70158 (16)0.0768 (12)
C1B0.2738 (3)0.1656 (11)0.7806 (2)0.0593 (14)
H1BA0.29010.02190.80200.071*
C2B0.1972 (3)0.2425 (14)0.7741 (2)0.0666 (17)
H2BA0.16200.15540.79200.080*
C3B0.1714 (3)0.4476 (12)0.74136 (18)0.0525 (14)
C4B0.2241 (3)0.5826 (13)0.71591 (19)0.0553 (14)
H4BA0.20660.72350.69390.066*
C5B0.3026 (3)0.5066 (13)0.72344 (19)0.0552 (14)
H5BA0.33820.59670.70650.066*
C6B0.3285 (3)0.2963 (12)0.75623 (17)0.0495 (12)
C7B0.4133 (3)0.2139 (12)0.76452 (19)0.0579 (14)
C8B0.4699 (3)0.3840 (13)0.74273 (18)0.0605 (16)
H8BA0.45270.40440.70200.073*
H8BB0.46970.54870.76020.073*
C9B0.6007 (3)0.4055 (12)0.7307 (2)0.0558 (14)
C10B0.6816 (3)0.2864 (12)0.74456 (18)0.0488 (11)
C11B0.7416 (3)0.3983 (13)0.7210 (2)0.0677 (16)
H11B0.73000.53980.69800.081*
C12B0.8182 (3)0.2997 (15)0.7317 (2)0.0657 (15)
H12B0.85860.37550.71680.079*
C13B0.8332 (3)0.0859 (12)0.76505 (18)0.0497 (12)
C14B0.7754 (3)0.0248 (12)0.78855 (18)0.0545 (15)
H14B0.78730.16530.81180.065*
C15B0.6984 (3)0.0746 (13)0.77740 (18)0.0525 (13)
H15B0.65840.00310.79230.063*
Br1C0.32100 (3)0.72787 (16)0.94037 (3)0.0849 (3)
Cl1C1.15846 (7)0.2313 (4)0.89129 (6)0.0805 (5)
O1C0.6700 (2)0.3571 (9)0.86746 (17)0.0800 (14)
O2C0.7989 (2)0.6225 (9)0.91351 (17)0.0693 (12)
O3C0.8057 (2)0.2890 (10)0.97126 (16)0.0758 (12)
C1C0.5592 (3)0.7933 (11)0.93756 (19)0.0515 (13)
H1CA0.59970.90630.95200.062*
C2C0.4832 (3)0.8341 (12)0.9467 (2)0.0552 (14)
H2CA0.47290.97270.96780.066*
C3C0.4234 (3)0.6727 (13)0.92500 (19)0.0533 (13)
C4C0.4372 (3)0.4662 (16)0.89371 (19)0.0611 (14)
H4CA0.39580.35690.87880.073*
C5C0.5134 (3)0.4232 (13)0.88469 (18)0.0549 (13)
H5CA0.52310.28430.86350.066*
C6C0.5757 (3)0.5854 (10)0.90700 (18)0.0450 (12)
C7C0.6575 (3)0.5282 (11)0.8977 (2)0.0519 (14)
C8C0.7228 (3)0.6899 (14)0.9273 (2)0.0642 (15)
H8CA0.72640.67490.96790.077*
H8CB0.71080.86430.91680.077*
C9C0.8341 (3)0.4191 (13)0.93900 (19)0.0511 (13)
C10C0.9124 (3)0.3701 (10)0.92392 (18)0.0482 (13)
C11C0.9457 (3)0.5376 (11)0.89043 (19)0.0517 (13)
H11C0.91700.67830.87480.062*
C12C1.0218 (3)0.4933 (14)0.8805 (2)0.0573 (14)
H12C1.04450.60500.85850.069*
C13C1.0634 (3)0.2850 (12)0.9034 (2)0.0514 (13)
C14C1.0313 (3)0.1212 (12)0.9361 (2)0.0566 (13)
H14C1.06050.01880.95160.068*
C15C0.9556 (3)0.1613 (13)0.9465 (2)0.0542 (13)
H15C0.93390.04770.96870.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0459 (3)0.1128 (7)0.0917 (4)0.0160 (4)0.0140 (3)0.0005 (4)
Cl1A0.0560 (7)0.1171 (17)0.1044 (11)0.0214 (11)0.0302 (8)0.0042 (12)
O1A0.065 (2)0.102 (4)0.087 (3)0.003 (2)0.019 (2)0.047 (3)
O2A0.0488 (19)0.057 (3)0.090 (2)0.005 (2)0.0276 (18)0.009 (2)
O3A0.065 (2)0.082 (3)0.082 (2)0.003 (3)0.0341 (19)0.015 (3)
C1A0.050 (2)0.043 (3)0.057 (3)0.000 (3)0.008 (2)0.003 (3)
C2A0.058 (3)0.045 (3)0.057 (3)0.004 (3)0.017 (2)0.009 (2)
C3A0.043 (2)0.056 (4)0.048 (2)0.009 (3)0.003 (2)0.003 (3)
C4A0.050 (2)0.053 (3)0.060 (3)0.004 (4)0.000 (2)0.004 (3)
C5A0.053 (3)0.041 (3)0.054 (2)0.003 (3)0.004 (2)0.013 (3)
C6A0.050 (3)0.044 (3)0.042 (2)0.004 (2)0.004 (2)0.004 (2)
C7A0.052 (3)0.058 (4)0.049 (2)0.008 (3)0.010 (2)0.001 (3)
C8A0.050 (3)0.054 (4)0.087 (3)0.004 (3)0.024 (3)0.012 (3)
C9A0.048 (3)0.055 (4)0.057 (3)0.008 (3)0.011 (2)0.003 (3)
C10A0.044 (2)0.049 (3)0.048 (2)0.003 (2)0.007 (2)0.002 (2)
C11A0.053 (3)0.048 (3)0.062 (3)0.007 (3)0.018 (2)0.009 (3)
C12A0.062 (3)0.069 (4)0.071 (3)0.000 (4)0.029 (2)0.011 (4)
C13A0.046 (3)0.071 (4)0.065 (3)0.001 (3)0.011 (2)0.015 (3)
C14A0.052 (3)0.057 (4)0.058 (3)0.014 (3)0.001 (2)0.000 (3)
C15A0.060 (3)0.055 (4)0.050 (3)0.010 (3)0.012 (2)0.002 (3)
Br1B0.0535 (3)0.1015 (6)0.0861 (4)0.0141 (4)0.0153 (3)0.0053 (4)
Cl1B0.0359 (5)0.0806 (12)0.0704 (7)0.0202 (6)0.0067 (5)0.0083 (7)
O1B0.072 (2)0.070 (3)0.091 (2)0.030 (3)0.0089 (19)0.019 (3)
O2B0.0516 (18)0.073 (3)0.0619 (19)0.024 (2)0.0083 (15)0.008 (2)
O3B0.073 (2)0.072 (3)0.085 (2)0.028 (3)0.0124 (19)0.023 (3)
C1B0.073 (3)0.045 (3)0.062 (3)0.013 (3)0.018 (3)0.016 (3)
C2B0.076 (4)0.064 (4)0.064 (3)0.008 (3)0.026 (3)0.016 (3)
C3B0.044 (2)0.068 (4)0.046 (2)0.003 (2)0.0098 (19)0.006 (3)
C4B0.053 (3)0.049 (4)0.062 (3)0.012 (3)0.009 (2)0.015 (3)
C5B0.044 (2)0.058 (4)0.062 (3)0.007 (3)0.008 (2)0.015 (3)
C6B0.055 (3)0.050 (3)0.040 (2)0.012 (3)0.0021 (19)0.002 (2)
C7B0.068 (3)0.051 (4)0.048 (3)0.029 (3)0.005 (2)0.001 (2)
C8B0.057 (3)0.079 (4)0.045 (2)0.030 (3)0.007 (2)0.006 (2)
C9B0.062 (3)0.061 (4)0.046 (2)0.014 (3)0.015 (2)0.000 (3)
C10B0.055 (2)0.047 (3)0.044 (2)0.011 (3)0.009 (2)0.007 (2)
C11B0.077 (3)0.065 (4)0.065 (3)0.014 (3)0.021 (3)0.016 (3)
C12B0.057 (3)0.074 (4)0.073 (3)0.005 (3)0.030 (2)0.006 (3)
C13B0.050 (2)0.046 (3)0.053 (2)0.012 (3)0.010 (2)0.001 (3)
C14B0.050 (3)0.059 (4)0.054 (2)0.012 (3)0.008 (2)0.014 (3)
C15B0.053 (3)0.054 (4)0.053 (2)0.003 (3)0.017 (2)0.005 (3)
Br1C0.0474 (3)0.1115 (7)0.0968 (4)0.0085 (4)0.0169 (3)0.0075 (4)
Cl1C0.0425 (6)0.1100 (15)0.0921 (9)0.0088 (9)0.0205 (6)0.0061 (10)
O1C0.066 (2)0.087 (4)0.090 (3)0.011 (2)0.022 (2)0.036 (3)
O2C0.055 (2)0.064 (3)0.096 (3)0.001 (2)0.034 (2)0.004 (3)
O3C0.065 (2)0.086 (3)0.082 (2)0.006 (2)0.0283 (19)0.024 (3)
C1C0.054 (3)0.044 (3)0.059 (3)0.006 (3)0.017 (2)0.010 (3)
C2C0.052 (3)0.053 (4)0.060 (3)0.007 (3)0.012 (2)0.007 (3)
C3C0.047 (2)0.057 (4)0.057 (3)0.005 (3)0.012 (2)0.010 (3)
C4C0.052 (3)0.064 (4)0.062 (3)0.009 (4)0.002 (2)0.001 (4)
C5C0.064 (3)0.048 (4)0.051 (2)0.008 (3)0.006 (2)0.002 (3)
C6C0.052 (3)0.038 (3)0.046 (2)0.002 (2)0.013 (2)0.005 (2)
C7C0.057 (3)0.046 (4)0.056 (3)0.008 (3)0.018 (2)0.004 (3)
C8C0.052 (3)0.056 (4)0.089 (4)0.012 (3)0.024 (3)0.003 (3)
C9C0.051 (3)0.050 (4)0.052 (2)0.002 (3)0.011 (2)0.001 (3)
C10C0.049 (3)0.048 (4)0.047 (2)0.012 (2)0.007 (2)0.005 (2)
C11C0.052 (3)0.048 (4)0.057 (2)0.004 (3)0.016 (2)0.004 (2)
C12C0.055 (3)0.059 (4)0.063 (3)0.006 (3)0.022 (2)0.005 (3)
C13C0.041 (2)0.058 (4)0.056 (3)0.002 (3)0.012 (2)0.009 (3)
C14C0.057 (3)0.049 (3)0.061 (3)0.004 (3)0.004 (2)0.001 (3)
C15C0.057 (3)0.049 (4)0.057 (3)0.000 (3)0.012 (2)0.001 (3)
Geometric parameters (Å, º) top
Br1A—C3A1.884 (4)C6B—C7B1.488 (7)
Cl1A—C13A1.735 (5)C7B—C8B1.493 (9)
O1A—C7A1.210 (7)C8B—H8BA0.9700
O2A—C9A1.351 (7)C8B—H8BB0.9700
O2A—C8A1.428 (6)C9B—C10B1.497 (7)
O3A—C9A1.187 (6)C10B—C15B1.370 (8)
C1A—C6A1.401 (7)C10B—C11B1.401 (7)
C1A—C2A1.409 (6)C11B—C12B1.386 (8)
C1A—H1AA0.9300C11B—H11B0.9300
C2A—C3A1.376 (7)C12B—C13B1.384 (9)
C2A—H2AA0.9300C12B—H12B0.9300
C3A—C4A1.396 (9)C13B—C14B1.365 (6)
C4A—C5A1.366 (6)C14B—C15B1.395 (6)
C4A—H4AA0.9300C14B—H14B0.9300
C5A—C6A1.392 (7)C15B—H15B0.9300
C5A—H5AA0.9300Br1C—C3C1.884 (4)
C6A—C7A1.481 (6)Cl1C—C13C1.732 (5)
C7A—C8A1.493 (7)O1C—C7C1.208 (6)
C8A—H8AA0.9700O2C—C9C1.325 (8)
C8A—H8AB0.9700O2C—C8C1.451 (5)
C9A—C10A1.495 (6)O3C—C9C1.210 (6)
C10A—C15A1.377 (8)C1C—C2C1.378 (6)
C10A—C11A1.379 (7)C1C—C6C1.386 (7)
C11A—C12A1.375 (6)C1C—H1CA0.9300
C11A—H11A0.9300C2C—C3C1.356 (8)
C12A—C13A1.375 (10)C2C—H2CA0.9300
C12A—H12A0.9300C3C—C4C1.376 (10)
C13A—C14A1.405 (8)C4C—C5C1.382 (6)
C14A—C15A1.379 (7)C4C—H4CA0.9300
C14A—H14A0.9300C5C—C6C1.392 (7)
C15A—H15A0.9300C5C—H5CA0.9300
Br1B—C3B1.873 (5)C6C—C7C1.491 (6)
Cl1B—C13B1.735 (5)C7C—C8C1.474 (8)
O1B—C7B1.227 (8)C8C—H8CA0.9700
O2B—C9B1.324 (7)C8C—H8CB0.9700
O2B—C8B1.431 (5)C9C—C10C1.477 (6)
O3B—C9B1.183 (7)C10C—C15C1.382 (8)
C1B—C2B1.351 (7)C10C—C11C1.395 (7)
C1B—C6B1.387 (7)C11C—C12C1.390 (6)
C1B—H1BA0.9300C11C—H11C0.9300
C2B—C3B1.364 (9)C12C—C13C1.368 (9)
C2B—H2BA0.9300C12C—H12C0.9300
C3B—C4B1.385 (7)C13C—C14C1.358 (7)
C4B—C5B1.379 (6)C14C—C15C1.383 (7)
C4B—H4BA0.9300C14C—H14C0.9300
C5B—C6B1.387 (8)C15C—H15C0.9300
C5B—H5BA0.9300
C9A—O2A—C8A115.7 (5)O2B—C8B—H8BB109.5
C6A—C1A—C2A119.9 (5)C7B—C8B—H8BB109.5
C6A—C1A—H1AA120.1H8BA—C8B—H8BB108.1
C2A—C1A—H1AA120.1O3B—C9B—O2B124.5 (5)
C3A—C2A—C1A118.9 (5)O3B—C9B—C10B124.2 (5)
C3A—C2A—H2AA120.6O2B—C9B—C10B111.2 (5)
C1A—C2A—H2AA120.6C15B—C10B—C11B119.6 (5)
C2A—C3A—C4A121.8 (4)C15B—C10B—C9B123.6 (5)
C2A—C3A—Br1A117.9 (4)C11B—C10B—C9B116.8 (5)
C4A—C3A—Br1A120.4 (4)C12B—C11B—C10B120.5 (6)
C5A—C4A—C3A118.6 (5)C12B—C11B—H11B119.8
C5A—C4A—H4AA120.7C10B—C11B—H11B119.8
C3A—C4A—H4AA120.7C13B—C12B—C11B118.4 (5)
C4A—C5A—C6A122.0 (5)C13B—C12B—H12B120.8
C4A—C5A—H5AA119.0C11B—C12B—H12B120.8
C6A—C5A—H5AA119.0C14B—C13B—C12B121.8 (5)
C5A—C6A—C1A118.8 (4)C14B—C13B—Cl1B121.6 (4)
C5A—C6A—C7A120.0 (5)C12B—C13B—Cl1B116.6 (4)
C1A—C6A—C7A121.2 (5)C13B—C14B—C15B119.5 (5)
O1A—C7A—C6A121.4 (5)C13B—C14B—H14B120.3
O1A—C7A—C8A120.0 (4)C15B—C14B—H14B120.3
C6A—C7A—C8A118.6 (5)C10B—C15B—C14B120.2 (5)
O2A—C8A—C7A112.8 (5)C10B—C15B—H15B119.9
O2A—C8A—H8AA109.0C14B—C15B—H15B119.9
C7A—C8A—H8AA109.0C9C—O2C—C8C116.2 (4)
O2A—C8A—H8AB109.0C2C—C1C—C6C120.6 (5)
C7A—C8A—H8AB109.0C2C—C1C—H1CA119.7
H8AA—C8A—H8AB107.8C6C—C1C—H1CA119.7
O3A—C9A—O2A124.0 (5)C3C—C2C—C1C120.2 (5)
O3A—C9A—C10A125.1 (5)C3C—C2C—H2CA119.9
O2A—C9A—C10A110.8 (5)C1C—C2C—H2CA119.9
C15A—C10A—C11A119.6 (4)C2C—C3C—C4C121.0 (4)
C15A—C10A—C9A117.7 (5)C2C—C3C—Br1C119.1 (4)
C11A—C10A—C9A122.6 (5)C4C—C3C—Br1C119.9 (4)
C12A—C11A—C10A121.2 (6)C3C—C4C—C5C119.1 (6)
C12A—C11A—H11A119.4C3C—C4C—H4CA120.4
C10A—C11A—H11A119.4C5C—C4C—H4CA120.4
C11A—C12A—C13A118.7 (6)C4C—C5C—C6C120.8 (6)
C11A—C12A—H12A120.7C4C—C5C—H5CA119.6
C13A—C12A—H12A120.7C6C—C5C—H5CA119.6
C12A—C13A—C14A121.4 (4)C1C—C6C—C5C118.4 (4)
C12A—C13A—Cl1A120.1 (5)C1C—C6C—C7C122.6 (5)
C14A—C13A—Cl1A118.4 (5)C5C—C6C—C7C119.0 (5)
C15A—C14A—C13A118.1 (5)O1C—C7C—C8C121.3 (5)
C15A—C14A—H14A120.9O1C—C7C—C6C121.8 (5)
C13A—C14A—H14A120.9C8C—C7C—C6C116.9 (4)
C10A—C15A—C14A120.9 (5)O2C—C8C—C7C112.0 (5)
C10A—C15A—H15A119.6O2C—C8C—H8CA109.2
C14A—C15A—H15A119.6C7C—C8C—H8CA109.2
C9B—O2B—C8B114.3 (5)O2C—C8C—H8CB109.2
C2B—C1B—C6B121.4 (5)C7C—C8C—H8CB109.2
C2B—C1B—H1BA119.3H8CA—C8C—H8CB107.9
C6B—C1B—H1BA119.3O3C—C9C—O2C123.9 (5)
C1B—C2B—C3B120.2 (5)O3C—C9C—C10C123.8 (6)
C1B—C2B—H2BA119.9O2C—C9C—C10C112.3 (5)
C3B—C2B—H2BA119.9C15C—C10C—C11C119.3 (4)
C2B—C3B—C4B120.2 (5)C15C—C10C—C9C119.0 (5)
C2B—C3B—Br1B120.8 (4)C11C—C10C—C9C121.6 (5)
C4B—C3B—Br1B119.0 (4)C12C—C11C—C10C119.7 (5)
C5B—C4B—C3B119.5 (6)C12C—C11C—H11C120.2
C5B—C4B—H4BA120.2C10C—C11C—H11C120.2
C3B—C4B—H4BA120.2C13C—C12C—C11C119.8 (5)
C4B—C5B—C6B120.2 (5)C13C—C12C—H12C120.1
C4B—C5B—H5BA119.9C11C—C12C—H12C120.1
C6B—C5B—H5BA119.9C14C—C13C—C12C120.8 (5)
C1B—C6B—C5B118.4 (4)C14C—C13C—Cl1C119.5 (5)
C1B—C6B—C7B121.2 (5)C12C—C13C—Cl1C119.7 (4)
C5B—C6B—C7B120.4 (5)C13C—C14C—C15C120.4 (5)
O1B—C7B—C6B121.1 (6)C13C—C14C—H14C119.8
O1B—C7B—C8B121.6 (5)C15C—C14C—H14C119.8
C6B—C7B—C8B117.2 (5)C10C—C15C—C14C120.0 (5)
O2B—C8B—C7B110.8 (5)C10C—C15C—H15C120.0
O2B—C8B—H8BA109.5C14C—C15C—H15C120.0
C7B—C8B—H8BA109.5
C6A—C1A—C2A—C3A2.5 (7)C8B—O2B—C9B—O3B0.8 (8)
C1A—C2A—C3A—C4A3.3 (8)C8B—O2B—C9B—C10B179.0 (4)
C1A—C2A—C3A—Br1A175.9 (4)O3B—C9B—C10B—C15B178.7 (6)
C2A—C3A—C4A—C5A1.8 (8)O2B—C9B—C10B—C15B1.2 (7)
Br1A—C3A—C4A—C5A177.3 (4)O3B—C9B—C10B—C11B0.2 (8)
C3A—C4A—C5A—C6A0.5 (8)O2B—C9B—C10B—C11B179.6 (5)
C4A—C5A—C6A—C1A1.3 (8)C15B—C10B—C11B—C12B1.5 (9)
C4A—C5A—C6A—C7A177.7 (5)C9B—C10B—C11B—C12B180.0 (5)
C2A—C1A—C6A—C5A0.2 (7)C10B—C11B—C12B—C13B1.4 (9)
C2A—C1A—C6A—C7A179.2 (5)C11B—C12B—C13B—C14B1.7 (9)
C5A—C6A—C7A—O1A5.4 (8)C11B—C12B—C13B—Cl1B179.0 (5)
C1A—C6A—C7A—O1A175.7 (5)C12B—C13B—C14B—C15B2.0 (8)
C5A—C6A—C7A—C8A174.0 (5)Cl1B—C13B—C14B—C15B178.7 (4)
C1A—C6A—C7A—C8A4.9 (7)C11B—C10B—C15B—C14B1.8 (8)
C9A—O2A—C8A—C7A76.3 (6)C9B—C10B—C15B—C14B179.8 (5)
O1A—C7A—C8A—O2A3.6 (8)C13B—C14B—C15B—C10B2.0 (8)
C6A—C7A—C8A—O2A177.0 (5)C6C—C1C—C2C—C3C1.0 (8)
C8A—O2A—C9A—O3A1.7 (7)C1C—C2C—C3C—C4C0.1 (8)
C8A—O2A—C9A—C10A178.6 (4)C1C—C2C—C3C—Br1C178.0 (4)
O3A—C9A—C10A—C15A1.5 (8)C2C—C3C—C4C—C5C0.3 (8)
O2A—C9A—C10A—C15A178.3 (5)Br1C—C3C—C4C—C5C177.5 (4)
O3A—C9A—C10A—C11A176.0 (5)C3C—C4C—C5C—C6C0.2 (8)
O2A—C9A—C10A—C11A0.8 (7)C2C—C1C—C6C—C5C1.6 (7)
C15A—C10A—C11A—C12A1.2 (8)C2C—C1C—C6C—C7C177.8 (5)
C9A—C10A—C11A—C12A176.3 (5)C4C—C5C—C6C—C1C1.2 (7)
C10A—C11A—C12A—C13A0.5 (9)C4C—C5C—C6C—C7C178.3 (5)
C11A—C12A—C13A—C14A0.2 (9)C1C—C6C—C7C—O1C174.4 (5)
C11A—C12A—C13A—Cl1A179.3 (5)C5C—C6C—C7C—O1C6.2 (7)
C12A—C13A—C14A—C15A0.2 (8)C1C—C6C—C7C—C8C5.8 (7)
Cl1A—C13A—C14A—C15A179.3 (4)C5C—C6C—C7C—C8C173.6 (5)
C11A—C10A—C15A—C14A1.2 (8)C9C—O2C—C8C—C7C77.1 (6)
C9A—C10A—C15A—C14A176.4 (5)O1C—C7C—C8C—O2C2.3 (8)
C13A—C14A—C15A—C10A0.5 (8)C6C—C7C—C8C—O2C178.0 (4)
C6B—C1B—C2B—C3B2.3 (9)C8C—O2C—C9C—O3C1.4 (8)
C1B—C2B—C3B—C4B1.9 (9)C8C—O2C—C9C—C10C178.1 (4)
C1B—C2B—C3B—Br1B179.8 (5)O3C—C9C—C10C—C15C1.6 (8)
C2B—C3B—C4B—C5B0.7 (8)O2C—C9C—C10C—C15C178.9 (5)
Br1B—C3B—C4B—C5B179.1 (4)O3C—C9C—C10C—C11C174.3 (5)
C3B—C4B—C5B—C6B0.1 (8)O2C—C9C—C10C—C11C5.2 (7)
C2B—C1B—C6B—C5B1.5 (8)C15C—C10C—C11C—C12C0.4 (7)
C2B—C1B—C6B—C7B178.7 (5)C9C—C10C—C11C—C12C175.5 (5)
C4B—C5B—C6B—C1B0.3 (8)C10C—C11C—C12C—C13C0.5 (8)
C4B—C5B—C6B—C7B179.9 (5)C11C—C12C—C13C—C14C0.5 (8)
C1B—C6B—C7B—O1B4.9 (8)C11C—C12C—C13C—Cl1C179.6 (4)
C5B—C6B—C7B—O1B174.8 (5)C12C—C13C—C14C—C15C0.6 (8)
C1B—C6B—C7B—C8B172.6 (5)Cl1C—C13C—C14C—C15C179.7 (4)
C5B—C6B—C7B—C8B7.7 (7)C11C—C10C—C15C—C14C0.4 (7)
C9B—O2B—C8B—C7B171.7 (4)C9C—C10C—C15C—C14C175.6 (5)
O1B—C7B—C8B—O2B1.1 (7)C13C—C14C—C15C—C10C0.5 (8)
C6B—C7B—C8B—O2B178.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···O3B0.932.593.227 (7)126
C5B—H5BA···O1A0.932.483.217 (7)136
C15B—H15B···O1C0.932.593.254 (7)129

Experimental details

Crystal data
Chemical formulaC15H10BrClO3
Mr353.59
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)17.1061 (11), 5.3062 (4), 24.0376 (16)
β (°) 101.502 (1)
V3)2138.0 (3)
Z6
Radiation typeMo Kα
µ (mm1)3.07
Crystal size (mm)0.41 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.364, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
18463, 8890, 5931
Rint0.021
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.142, 1.04
No. of reflections8890
No. of parameters541
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.54
Absolute structureFlack (1983), 3590 Friedel pairs
Absolute structure parameter0.065 (10)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···O3B0.932.593.227 (7)126
C5B—H5BA···O1A0.932.483.217 (7)136
C15B—H15B···O1C0.932.593.254 (7)129
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF and CSY thank Universiti Sains Malaysia for the Research University Grant 1001/PFIZIK/811160. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the 'Young scientist' award. GB thanks the Department of Information Technology, New Delhi, India, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1528.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Asik, S. I. J., Kumar, R., Isloor, A. M. & Shivananda, K. N. (2011b). Acta Cryst. E67, o1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011c). Acta Cryst. E67, o1529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301–13308.  CrossRef CAS Web of Science Google Scholar
First citationHuang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131–10136.  CrossRef CAS Web of Science Google Scholar
First citationKelly, L. T. & Howard, H. W. (1932). J. Am. Chem. Soc. 54, 4383–4385.  CrossRef CAS Google Scholar
First citationLitera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713–723.  Web of Science PubMed Google Scholar
First citationRather, J. B. & Reid, E. (1919). J. Am. Chem. Soc. 41, 75–83.  CrossRef CAS Google Scholar
First citationRuzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581–2590.  Web of Science CrossRef CAS Google Scholar
First citationSheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771–3773.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds