organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-4-hy­dr­oxy­piperidinium 2-(2-phenyl­eth­yl)benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 1 June 2011; accepted 14 June 2011; online 18 June 2011)

In the title compound, C11H15ClNO+·C15H13O2, the piperidinium ring adopts a chair conformation. In the crystal, cations and anions are connected by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, forming two-dimensional networks parallel to the bc plane. Furthermore, the crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For related structures, see: Cygler et al. (1980[Cygler, M., Skarżyński, T., Skolimowski, J. & Thozet, A. (1980). Acta Cryst. B36, 2481-2483.]); Cygler & Ahmed, (1984[Cygler, M. & Ahmed, F. R. (1984). Acta Cryst. B40, 436-440.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, o562.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365-o2366.], 2010[Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012-o2013.]); Tomlin et al. (1996[Tomlin, D. W., Bunning, T. J., Price, G. E., Fratini, A. V. & Adams, W. W. (1996). Acta Cryst. C52, 1000-1002.]). For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan (1984[Vartanyan, R. S. (1984). Pharm. Chem. J. 18, 736-749.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClNO+·C15H13O2

  • Mr = 437.94

  • Monoclinic, P 21 /c

  • a = 13.1016 (2) Å

  • b = 10.2963 (2) Å

  • c = 16.8015 (3) Å

  • β = 98.234 (1)°

  • V = 2243.12 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.45 × 0.43 × 0.33 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.938

  • 27219 measured reflections

  • 8207 independent reflections

  • 6646 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.03

  • 8207 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C20–C25 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3 0.890 (18) 1.891 (18) 2.7401 (12) 158.8 (16)
N1—H1N1⋯O3i 0.954 (16) 1.754 (16) 2.6939 (11) 167.7 (15)
N1—H2N1⋯O2ii 0.917 (16) 1.818 (16) 2.7223 (11) 168.6 (15)
C8—H8BCg2 0.99 2.85 3.6743 (11) 141
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide, which is a synthetic piperidine derivative, is a drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. A review on the synthesis and biological activity of uncondensed cyclic derivatives of piperidine has been reported (Vartanyan, 1984).

The crystal structures of 1,2,2,4,6,6-hexamethyl-4-piperidinol (Cygler et al., 1980), three isomers of (±)-1,2,3-trimethyl-4-phenyl- 4-piperidinol (Cygler & Ahmed, 1984), 1-(4-nitrophenyl)-4-piperidinol (Tomlin et al., 1996) and 4-[(E)-(2,4-difluorophenyl) (hydroxyimino)methyl]piperidinium picrate (Jasinski et al., 2009) have been reported. Also the crystal structures of 4-(4-chlorophenyl) piperidin-4-ol (Dutkiewicz et al., 2010) and 4-(4-chlorophenyl)- 4-hydroxypiperidinium maleate maleic acid solvate (Jasinski et al., 2010) have been reported. In view of the importance of the title compound (I), its crystal structure is reported herein.

The asymmetric unit of (I), (Fig.1), consists of a 4-(4-chlorophenyl)-4- hydroxypiperidinium cation and a 2-(2-phenylethyl)benzoate anion. The piperidine ring adopts a chair conformation with puckering parameters Q = 0.5678 (10) Å, θ = 1.81 (10)° and ϕ = 198 (3)° (Cremer & Pople, 1975). In the cation, the dihedral angle between the mean planes of the piperidinium ring (N1/C7–C11) with the benzene ring (C1–C6) is 88.12 (5)°. In the anion, the dihedral angle between the benzene (C12–C17) ring and the carboxy-subsituted phenyl (C20–C25) ring is 40.72 (5)°. In the crystal structure (Fig. 2), the cations and anions are connected by intermolecular N1—H1N1···O3, N1—H2N1···O3 and O1—H1O1···O3 hydrogen bonds, forming two-dimensional networks parallel to the bc plane. Furthermore, the crystal structure is stabilized by weak C—H···π interactions, involving the C20–C25 ring.

Related literature top

For related structures, see: Cygler et al. (1980); Cygler & Ahmed, (1984); Dutkiewicz et al. (2010); Jasinski et al. (2009, 2010); Tomlin et al. (1996). For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan (1984). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

4-(4-Chlorophenyl)-piperidin-4-ol (2.12 g, 0.01 mol) was dissolved in 10 ml of methanol and 2-(2-phenylethyl)benzoic acid (2.26 g, 0.01 mol) was dissolved in 10 ml of methanol. The solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. The formed salt was filtered and dried in vacuum desiccator over phosphorous pentoxide. Crystals suitable for X-ray analysis were obtained by slow evaporation of a N,N-dimethylformamide solution (m. p.: 445–448 K).

Refinement top

Atoms H1O1, H1N1, H2N1 were located in difference Fourier maps and refined freely [N–H = 0.917 (16)–0.954 (16) Å; O–H = 0.890 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95 or 0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Intermolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
4-(4-Chlorophenyl)-4-hydroxypiperidinium 2-(2-phenylethyl)benzoate top
Crystal data top
C11H15ClNO+·C15H13O2F(000) = 928
Mr = 437.94Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9967 reflections
a = 13.1016 (2) Åθ = 2.5–32.7°
b = 10.2963 (2) ŵ = 0.20 mm1
c = 16.8015 (3) ÅT = 100 K
β = 98.234 (1)°Block, colourless
V = 2243.12 (7) Å30.45 × 0.43 × 0.33 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8207 independent reflections
Radiation source: fine-focus sealed tube6646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 32.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.916, Tmax = 0.938k = 1515
27219 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.5497P]
where P = (Fo2 + 2Fc2)/3
8207 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C11H15ClNO+·C15H13O2V = 2243.12 (7) Å3
Mr = 437.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1016 (2) ŵ = 0.20 mm1
b = 10.2963 (2) ÅT = 100 K
c = 16.8015 (3) Å0.45 × 0.43 × 0.33 mm
β = 98.234 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6646 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.938Rint = 0.025
27219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.44 e Å3
8207 reflectionsΔρmin = 0.36 e Å3
292 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31506 (2)0.35787 (3)0.13139 (2)0.03391 (8)
O10.00926 (5)0.14140 (7)0.20489 (5)0.02077 (15)
N10.03580 (6)0.41264 (8)0.08973 (5)0.01795 (15)
C10.20108 (7)0.00102 (10)0.08361 (6)0.01995 (18)
H1A0.20800.06610.04600.024*
C20.25545 (8)0.11629 (10)0.07964 (6)0.02206 (19)
H2A0.29900.12800.03960.026*
C30.24543 (8)0.21405 (10)0.13489 (7)0.02213 (19)
C40.18101 (8)0.19870 (10)0.19279 (7)0.0250 (2)
H4A0.17370.26650.22990.030*
C50.12706 (8)0.08269 (10)0.19592 (6)0.02169 (19)
H5A0.08300.07200.23570.026*
C60.13625 (7)0.01800 (9)0.14203 (6)0.01690 (16)
C70.07888 (7)0.14634 (9)0.14699 (6)0.01646 (16)
C80.15729 (7)0.25735 (9)0.16651 (6)0.01683 (16)
H8A0.20500.25860.12590.020*
H8B0.19850.24140.21970.020*
C90.10419 (7)0.38846 (10)0.16734 (6)0.01883 (17)
H9A0.15690.45790.17650.023*
H9B0.06270.39100.21210.023*
C100.04213 (7)0.30767 (10)0.06881 (6)0.02007 (18)
H10A0.09030.30590.10910.024*
H10B0.08250.32600.01560.024*
C110.01043 (7)0.17595 (9)0.06675 (6)0.01840 (17)
H11A0.04270.10740.05550.022*
H11B0.05320.17510.02270.022*
O20.17229 (6)0.09424 (8)0.48194 (4)0.02185 (15)
O30.06394 (5)0.12510 (7)0.36821 (5)0.02150 (15)
C120.40341 (9)0.18559 (11)0.42461 (7)0.0259 (2)
H12A0.35260.17060.45860.031*
C130.47129 (9)0.28931 (11)0.44020 (8)0.0308 (2)
H13A0.46690.34430.48500.037*
C140.54514 (9)0.31271 (12)0.39082 (9)0.0347 (3)
H14A0.59150.38360.40160.042*
C150.55121 (10)0.23302 (15)0.32602 (10)0.0405 (3)
H15A0.60150.24940.29180.049*
C160.48372 (9)0.12813 (13)0.31033 (8)0.0332 (3)
H16A0.48880.07320.26560.040*
C170.40923 (7)0.10336 (10)0.35948 (6)0.02131 (18)
C180.34031 (8)0.01409 (10)0.34599 (7)0.02296 (19)
H18A0.34260.04880.29130.028*
H18B0.26830.01150.34970.028*
C190.37437 (7)0.12055 (10)0.40862 (7)0.02103 (18)
H19A0.44930.13580.41070.025*
H19B0.36230.08970.46230.025*
C200.31783 (7)0.24719 (9)0.39020 (6)0.01833 (17)
C210.37025 (8)0.35504 (11)0.36547 (7)0.0240 (2)
H21A0.44180.34760.36220.029*
C220.32102 (9)0.47260 (10)0.34553 (7)0.0254 (2)
H22A0.35880.54410.32910.031*
C230.21641 (8)0.48510 (10)0.34974 (6)0.02224 (19)
H23A0.18250.56580.33770.027*
C240.16174 (8)0.37824 (9)0.37178 (6)0.01810 (17)
H24A0.08970.38580.37300.022*
C250.21110 (7)0.26014 (9)0.39210 (5)0.01569 (16)
C260.14577 (7)0.15046 (9)0.41621 (6)0.01634 (16)
H1O10.0426 (13)0.1412 (16)0.2549 (11)0.040 (4)*
H1N10.0007 (12)0.4910 (15)0.0969 (10)0.032 (4)*
H2N10.0777 (12)0.4202 (16)0.0507 (10)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.04360 (17)0.02108 (12)0.04013 (17)0.00762 (10)0.01656 (13)0.00582 (10)
O10.0165 (3)0.0312 (4)0.0156 (3)0.0001 (3)0.0057 (3)0.0022 (3)
N10.0182 (3)0.0205 (4)0.0155 (4)0.0027 (3)0.0033 (3)0.0009 (3)
C10.0230 (4)0.0201 (4)0.0178 (4)0.0008 (3)0.0066 (3)0.0022 (3)
C20.0258 (4)0.0206 (4)0.0214 (5)0.0005 (3)0.0089 (4)0.0008 (3)
C30.0239 (4)0.0183 (4)0.0246 (5)0.0001 (3)0.0050 (4)0.0016 (3)
C40.0281 (5)0.0227 (4)0.0255 (5)0.0008 (4)0.0085 (4)0.0078 (4)
C50.0211 (4)0.0248 (4)0.0206 (5)0.0004 (3)0.0079 (4)0.0059 (4)
C60.0155 (4)0.0201 (4)0.0151 (4)0.0015 (3)0.0022 (3)0.0012 (3)
C70.0153 (4)0.0209 (4)0.0136 (4)0.0004 (3)0.0035 (3)0.0013 (3)
C80.0149 (3)0.0208 (4)0.0149 (4)0.0007 (3)0.0026 (3)0.0006 (3)
C90.0188 (4)0.0227 (4)0.0148 (4)0.0016 (3)0.0018 (3)0.0030 (3)
C100.0168 (4)0.0243 (4)0.0186 (4)0.0008 (3)0.0006 (3)0.0005 (3)
C110.0183 (4)0.0208 (4)0.0157 (4)0.0011 (3)0.0010 (3)0.0006 (3)
O20.0217 (3)0.0268 (3)0.0178 (3)0.0008 (3)0.0056 (3)0.0061 (3)
O30.0197 (3)0.0251 (3)0.0195 (3)0.0051 (3)0.0021 (3)0.0039 (3)
C120.0264 (5)0.0253 (5)0.0263 (5)0.0002 (4)0.0050 (4)0.0022 (4)
C130.0326 (5)0.0245 (5)0.0331 (6)0.0002 (4)0.0027 (5)0.0002 (4)
C140.0249 (5)0.0297 (5)0.0469 (8)0.0076 (4)0.0040 (5)0.0058 (5)
C150.0284 (5)0.0478 (7)0.0478 (8)0.0146 (5)0.0141 (5)0.0033 (6)
C160.0292 (5)0.0400 (6)0.0333 (6)0.0091 (5)0.0148 (5)0.0026 (5)
C170.0174 (4)0.0240 (4)0.0225 (5)0.0015 (3)0.0029 (3)0.0044 (4)
C180.0214 (4)0.0247 (4)0.0227 (5)0.0035 (3)0.0029 (4)0.0030 (4)
C190.0163 (4)0.0233 (4)0.0234 (5)0.0012 (3)0.0025 (3)0.0023 (4)
C200.0163 (4)0.0209 (4)0.0178 (4)0.0021 (3)0.0026 (3)0.0017 (3)
C210.0191 (4)0.0285 (5)0.0245 (5)0.0070 (4)0.0040 (4)0.0010 (4)
C220.0286 (5)0.0239 (5)0.0234 (5)0.0095 (4)0.0025 (4)0.0021 (4)
C230.0303 (5)0.0182 (4)0.0179 (4)0.0023 (4)0.0023 (4)0.0008 (3)
C240.0210 (4)0.0191 (4)0.0144 (4)0.0008 (3)0.0034 (3)0.0003 (3)
C250.0172 (4)0.0177 (4)0.0125 (4)0.0011 (3)0.0030 (3)0.0008 (3)
C260.0165 (4)0.0175 (4)0.0162 (4)0.0008 (3)0.0064 (3)0.0003 (3)
Geometric parameters (Å, º) top
Cl1—C31.7447 (10)O3—C261.2728 (12)
O1—C71.4265 (11)C12—C131.3905 (16)
O1—H1O10.890 (18)C12—C171.3943 (16)
N1—C91.4934 (13)C12—H12A0.9500
N1—C101.4938 (13)C13—C141.3829 (19)
N1—H1N10.954 (16)C13—H13A0.9500
N1—H2N10.917 (16)C14—C151.375 (2)
C1—C21.3908 (14)C14—H14A0.9500
C1—C61.4008 (13)C15—C161.3967 (18)
C1—H1A0.9500C15—H15A0.9500
C2—C31.3881 (14)C16—C171.3893 (15)
C2—H2A0.9500C16—H16A0.9500
C3—C41.3852 (15)C17—C181.5068 (14)
C4—C51.3928 (15)C18—C191.5406 (15)
C4—H4A0.9500C18—H18A0.9900
C5—C61.3929 (13)C18—H18B0.9900
C5—H5A0.9500C19—C201.5097 (14)
C6—C71.5284 (13)C19—H19A0.9900
C7—C111.5390 (13)C19—H19B0.9900
C7—C81.5404 (13)C20—C211.3996 (13)
C8—C91.5196 (13)C20—C251.4096 (12)
C8—H8A0.9900C21—C221.3898 (16)
C8—H8B0.9900C21—H21A0.9500
C9—H9A0.9900C22—C231.3885 (16)
C9—H9B0.9900C22—H22A0.9500
C10—C111.5237 (14)C23—C241.3916 (13)
C10—H10A0.9900C23—H23A0.9500
C10—H10B0.9900C24—C251.3966 (13)
C11—H11A0.9900C24—H24A0.9500
C11—H11B0.9900C25—C261.5071 (12)
O2—C261.2513 (12)
C7—O1—H1O1111.7 (11)C7—C11—H11B109.3
C9—N1—C10112.91 (8)H11A—C11—H11B108.0
C9—N1—H1N1106.3 (10)C13—C12—C17120.59 (10)
C10—N1—H1N1107.7 (9)C13—C12—H12A119.7
C9—N1—H2N1107.0 (10)C17—C12—H12A119.7
C10—N1—H2N1110.6 (10)C14—C13—C12120.29 (12)
H1N1—N1—H2N1112.3 (14)C14—C13—H13A119.9
C2—C1—C6121.27 (9)C12—C13—H13A119.9
C2—C1—H1A119.4C15—C14—C13119.73 (11)
C6—C1—H1A119.4C15—C14—H14A120.1
C3—C2—C1119.24 (9)C13—C14—H14A120.1
C3—C2—H2A120.4C14—C15—C16120.27 (12)
C1—C2—H2A120.4C14—C15—H15A119.9
C4—C3—C2120.83 (9)C16—C15—H15A119.9
C4—C3—Cl1119.64 (8)C17—C16—C15120.62 (12)
C2—C3—Cl1119.53 (8)C17—C16—H16A119.7
C3—C4—C5119.20 (9)C15—C16—H16A119.7
C3—C4—H4A120.4C16—C17—C12118.49 (10)
C5—C4—H4A120.4C16—C17—C18120.98 (10)
C4—C5—C6121.48 (9)C12—C17—C18120.43 (9)
C4—C5—H5A119.3C17—C18—C19111.07 (9)
C6—C5—H5A119.3C17—C18—H18A109.4
C5—C6—C1117.96 (9)C19—C18—H18A109.4
C5—C6—C7121.28 (8)C17—C18—H18B109.4
C1—C6—C7120.75 (8)C19—C18—H18B109.4
O1—C7—C6111.95 (7)H18A—C18—H18B108.0
O1—C7—C11104.79 (7)C20—C19—C18112.89 (8)
C6—C7—C11110.66 (8)C20—C19—H19A109.0
O1—C7—C8110.69 (7)C18—C19—H19A109.0
C6—C7—C8109.57 (7)C20—C19—H19B109.0
C11—C7—C8109.07 (7)C18—C19—H19B109.0
C9—C8—C7111.65 (7)H19A—C19—H19B107.8
C9—C8—H8A109.3C21—C20—C25117.53 (9)
C7—C8—H8A109.3C21—C20—C19119.93 (8)
C9—C8—H8B109.3C25—C20—C19122.43 (8)
C7—C8—H8B109.3C22—C21—C20122.15 (9)
H8A—C8—H8B108.0C22—C21—H21A118.9
N1—C9—C8111.00 (8)C20—C21—H21A118.9
N1—C9—H9A109.4C23—C22—C21119.73 (9)
C8—C9—H9A109.4C23—C22—H22A120.1
N1—C9—H9B109.4C21—C22—H22A120.1
C8—C9—H9B109.4C22—C23—C24119.32 (9)
H9A—C9—H9B108.0C22—C23—H23A120.3
N1—C10—C11110.70 (7)C24—C23—H23A120.3
N1—C10—H10A109.5C23—C24—C25121.03 (9)
C11—C10—H10A109.5C23—C24—H24A119.5
N1—C10—H10B109.5C25—C24—H24A119.5
C11—C10—H10B109.5C24—C25—C20120.20 (8)
H10A—C10—H10B108.1C24—C25—C26117.20 (8)
C10—C11—C7111.40 (8)C20—C25—C26122.60 (8)
C10—C11—H11A109.3O2—C26—O3124.51 (9)
C7—C11—H11A109.3O2—C26—C25119.16 (8)
C10—C11—H11B109.3O3—C26—C25116.28 (8)
C6—C1—C2—C30.23 (16)C12—C13—C14—C150.08 (19)
C1—C2—C3—C40.97 (16)C13—C14—C15—C160.5 (2)
C1—C2—C3—Cl1178.92 (8)C14—C15—C16—C170.5 (2)
C2—C3—C4—C50.93 (17)C15—C16—C17—C120.07 (19)
Cl1—C3—C4—C5178.95 (9)C15—C16—C17—C18176.32 (12)
C3—C4—C5—C60.16 (17)C13—C12—C17—C160.52 (17)
C4—C5—C6—C10.55 (15)C13—C12—C17—C18175.89 (10)
C4—C5—C6—C7178.51 (10)C16—C17—C18—C19103.89 (12)
C2—C1—C6—C50.52 (15)C12—C17—C18—C1972.43 (12)
C2—C1—C6—C7178.55 (9)C17—C18—C19—C20171.43 (8)
C5—C6—C7—O16.88 (12)C18—C19—C20—C21110.08 (11)
C1—C6—C7—O1174.08 (8)C18—C19—C20—C2565.94 (12)
C5—C6—C7—C11123.37 (10)C25—C20—C21—C221.84 (16)
C1—C6—C7—C1157.59 (11)C19—C20—C21—C22178.06 (10)
C5—C6—C7—C8116.32 (10)C20—C21—C22—C230.16 (17)
C1—C6—C7—C862.72 (11)C21—C22—C23—C241.79 (16)
O1—C7—C8—C959.36 (10)C22—C23—C24—C252.03 (15)
C6—C7—C8—C9176.70 (8)C23—C24—C25—C200.30 (14)
C11—C7—C8—C955.42 (10)C23—C24—C25—C26179.23 (9)
C10—N1—C9—C855.59 (10)C21—C20—C25—C241.59 (14)
C7—C8—C9—N155.39 (10)C19—C20—C25—C24177.71 (9)
C9—N1—C10—C1155.93 (10)C21—C20—C25—C26178.90 (9)
N1—C10—C11—C756.19 (10)C19—C20—C25—C262.79 (14)
O1—C7—C11—C1062.75 (9)C24—C25—C26—O2125.98 (10)
C6—C7—C11—C10176.40 (7)C20—C25—C26—O253.54 (13)
C8—C7—C11—C1055.79 (10)C24—C25—C26—O351.43 (12)
C17—C12—C13—C140.45 (17)C20—C25—C26—O3129.05 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.890 (18)1.891 (18)2.7401 (12)158.8 (16)
N1—H1N1···O3i0.954 (16)1.754 (16)2.6939 (11)167.7 (15)
N1—H2N1···O2ii0.917 (16)1.818 (16)2.7223 (11)168.6 (15)
C8—H8B···Cg20.992.853.6743 (11)141
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H15ClNO+·C15H13O2
Mr437.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.1016 (2), 10.2963 (2), 16.8015 (3)
β (°) 98.234 (1)
V3)2243.12 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.45 × 0.43 × 0.33
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.916, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
27219, 8207, 6646
Rint0.025
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections8207
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C20–C25 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.890 (18)1.891 (18)2.7401 (12)158.8 (16)
N1—H1N1···O3i0.954 (16)1.754 (16)2.6939 (11)167.7 (15)
N1—H2N1···O2ii0.917 (16)1.818 (16)2.7223 (11)168.6 (15)
C8—H8B···Cg20.992.853.6743 (11)141
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. BPS thanks the University of Mysore for the research facilities.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCygler, M. & Ahmed, F. R. (1984). Acta Cryst. B40, 436–440.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCygler, M., Skarżyński, T., Skolimowski, J. & Thozet, A. (1980). Acta Cryst. B36, 2481–2483.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDutkiewicz, G., Siddaraju, B. P., Yathirajan, H. S., Siddegowda, M. S. & Kubicki, M. (2010). Acta Cryst. E66, o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365–o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o2012–o2013.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomlin, D. W., Bunning, T. J., Price, G. E., Fratini, A. V. & Adams, W. W. (1996). Acta Cryst. C52, 1000–1002.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVartanyan, R. S. (1984). Pharm. Chem. J. 18, 736–749.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds