organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholin-4-ium 4-meth­­oxy­benzoate 4-meth­­oxy­benzoic acid monohydrate

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhao@yahoo.com.cn

(Received 12 June 2011; accepted 15 June 2011; online 22 June 2011)

In the crystal structure of the title compound, C4H10NO+·C8H7O3·C8H8O3·H2O, cations, anions and neutral mol­ecules are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds into chains running parallel to the c axis. The –CO2 groups make dihedral angles of 4.6 (3) and 5.7 (4)° with the attached ring in the 4-methoxybenzoic acid molecule and the 4-methoxybenzoate anion, respectively.

Related literature

For related studies on co-crystals of amino derivatives, see: Fu et al. (2010[Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C8H7O3·C8H8O3·H2O

  • Mr = 409.43

  • Monoclinic, P 21 /c

  • a = 21.874 (4) Å

  • b = 11.753 (2) Å

  • c = 8.3618 (17) Å

  • β = 100.63 (3)°

  • V = 2112.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 21489 measured reflections

  • 4842 independent reflections

  • 2453 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.162

  • S = 1.03

  • 4842 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.90 1.75 2.628 (3) 164
N1—H1B⋯O2 0.90 1.96 2.837 (3) 163
O1—H1⋯O1Wi 0.82 1.76 2.579 (2) 173
O1W—H1WA⋯O4 0.82 1.91 2.714 (2) 167
O1W—H1WB⋯O4ii 0.82 1.91 2.712 (3) 164
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors, and there has been an increasing interest in the preparation of amino co-crystal compounds (Aminabhavi et al., 1986; Fu, et al. 2010). We report here the crystal structure of the title compound, morpholin-4-ium 4-methoxybenzoate 4-methoxybenzoic acid monohydrate.

The asymmetric unit of the title commpound is composed of one 4-methoxybenzoate anion, one morpholin-4-ium cation, one 4-methoxybenzoic acid molecule and one water molecule (Fig. 1). The morpholine ring is in a chair conformation. All geometric parameters are in the normal ranges. In the crystal structure, the H atoms bound to N and O atoms are involved in intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) linking ions and neutral molecules into one-dimensional chains parallel to the c-axis (Fig. 2).

Related literature top

For related studies on co-crystals of amino derivatives, see: Fu et al. (2010); Aminabhavi et al. (1986).

Experimental top

A mixture of morpholine (0.4 mmol) 4-methoxybenzoic acid (0.8 mmol) was dissolved in distilled water (10 ml). Colourless crystals suitable for X-ray analysis were obtained after 3 days on slow evaporation of the solvent.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding, with C–H = 0.93-0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The amine and carboxylic H atoms were located in a difference Fourier map and refined as riding, with the N–H = 0.90 (2) Å, O–H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing a one-dimensional chain (dashed line). Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.
Morpholin-4-ium 4-methoxybenzoate 4-methoxybenzoic acid monohydrate top
Crystal data top
C4H10NO+·C8H7O3·C8H8O3·H2OF(000) = 872
Mr = 409.43Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4842 reflections
a = 21.874 (4) Åθ = 3.0–27.5°
b = 11.753 (2) ŵ = 0.10 mm1
c = 8.3618 (17) ÅT = 298 K
β = 100.63 (3)°Needle, colourless
V = 2112.9 (7) Å30.30 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
4842 independent reflections
Radiation source: fine-focus sealed tube2453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD profile fitting scansh = 2827
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.910, Tmax = 1.000l = 1010
21489 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3115P]
where P = (Fo2 + 2Fc2)/3
4842 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C4H10NO+·C8H7O3·C8H8O3·H2OV = 2112.9 (7) Å3
Mr = 409.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.874 (4) ŵ = 0.10 mm1
b = 11.753 (2) ÅT = 298 K
c = 8.3618 (17) Å0.30 × 0.05 × 0.05 mm
β = 100.63 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4842 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2453 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.077
21489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4842 reflectionsΔρmin = 0.23 e Å3
264 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.30003 (8)0.67567 (15)0.28036 (19)0.0575 (5)
C100.40047 (10)0.61009 (19)0.2544 (3)0.0400 (5)
O60.56764 (7)0.62620 (15)0.0900 (2)0.0653 (5)
C120.46359 (11)0.6996 (2)0.0826 (3)0.0517 (6)
H12A0.46820.75520.00670.062*
C140.50318 (12)0.5405 (2)0.2459 (3)0.0556 (7)
H14A0.53500.48870.28070.067*
C130.51084 (11)0.6245 (2)0.1353 (3)0.0452 (6)
O50.34193 (10)0.53418 (18)0.4368 (3)0.0845 (7)
C150.44880 (12)0.5339 (2)0.3038 (3)0.0497 (6)
H15A0.44410.47710.37800.060*
C110.40899 (11)0.6921 (2)0.1430 (3)0.0486 (6)
H11A0.37720.74380.10750.058*
C90.34312 (12)0.6061 (2)0.3279 (3)0.0493 (6)
C160.57873 (13)0.7102 (3)0.0241 (4)0.0756 (9)
H16A0.61930.69900.04990.113*
H16B0.57650.78460.02210.113*
H16C0.54790.70380.12150.113*
O1W0.23075 (8)0.74295 (15)0.5012 (2)0.0634 (5)
H1WA0.24900.71320.43460.095*
H1WB0.25670.77030.57460.095*
N10.26721 (9)0.00361 (15)0.1437 (2)0.0462 (5)
H1A0.28830.02090.06740.055*
H1B0.22990.03080.13360.055*
O10.11518 (8)0.23024 (16)0.0259 (2)0.0703 (6)
H10.15140.22960.01250.105*
O70.26402 (9)0.14332 (16)0.4181 (2)0.0696 (6)
C10.10461 (12)0.1389 (2)0.1073 (3)0.0526 (6)
C20.04022 (11)0.1286 (2)0.1359 (3)0.0469 (6)
O20.14422 (8)0.06853 (17)0.1541 (3)0.0785 (6)
C50.08025 (12)0.0989 (2)0.1886 (3)0.0550 (7)
O30.14078 (8)0.09074 (17)0.2062 (3)0.0777 (6)
C70.02520 (12)0.0385 (2)0.2269 (3)0.0587 (7)
H7A0.05600.01300.27080.070*
C40.06580 (12)0.1890 (2)0.0972 (4)0.0661 (8)
H4A0.09680.24020.05280.079*
C60.03452 (12)0.0231 (2)0.2543 (3)0.0594 (7)
H6A0.04380.03780.31670.071*
C30.00622 (11)0.2043 (2)0.0707 (3)0.0571 (7)
H3A0.00290.26570.00890.069*
C190.30232 (12)0.0252 (2)0.3071 (3)0.0533 (7)
H19A0.34430.00470.31970.064*
H19B0.30500.10720.31960.064*
C180.25775 (15)0.1276 (2)0.1291 (3)0.0706 (8)
H18A0.23140.14520.02550.085*
H18B0.29750.16520.13280.085*
C200.27063 (14)0.0242 (2)0.4338 (3)0.0671 (8)
H20A0.22980.01010.42530.081*
H20B0.29440.00630.54050.081*
C80.15903 (14)0.0060 (3)0.2886 (4)0.0879 (10)
H8A0.20340.00600.27980.132*
H8B0.14630.07400.24040.132*
H8C0.13960.00300.40130.132*
C170.22811 (15)0.1700 (2)0.2644 (4)0.0769 (9)
H17A0.22300.25180.25500.092*
H17B0.18720.13620.25550.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0538 (11)0.0730 (12)0.0469 (10)0.0087 (10)0.0126 (8)0.0003 (9)
C100.0456 (14)0.0418 (13)0.0326 (12)0.0019 (11)0.0079 (11)0.0025 (10)
O60.0477 (11)0.0712 (13)0.0804 (13)0.0108 (9)0.0210 (10)0.0273 (10)
C120.0467 (15)0.0578 (16)0.0495 (14)0.0032 (12)0.0063 (12)0.0211 (12)
C140.0563 (16)0.0518 (16)0.0604 (16)0.0163 (13)0.0155 (14)0.0141 (13)
C130.0406 (14)0.0485 (15)0.0465 (14)0.0004 (11)0.0082 (11)0.0052 (12)
O50.0960 (16)0.0856 (15)0.0870 (15)0.0203 (12)0.0561 (13)0.0340 (12)
C150.0636 (17)0.0413 (14)0.0459 (14)0.0051 (12)0.0146 (13)0.0096 (11)
C110.0451 (15)0.0513 (15)0.0478 (14)0.0083 (11)0.0042 (12)0.0115 (12)
C90.0592 (17)0.0516 (16)0.0387 (14)0.0028 (13)0.0132 (13)0.0047 (12)
C160.0621 (19)0.076 (2)0.095 (2)0.0011 (15)0.0328 (17)0.0317 (18)
O1W0.0488 (10)0.0806 (14)0.0636 (12)0.0085 (9)0.0179 (9)0.0138 (10)
N10.0494 (12)0.0429 (11)0.0500 (12)0.0063 (9)0.0189 (10)0.0085 (9)
O10.0494 (11)0.0678 (13)0.0960 (15)0.0007 (9)0.0197 (10)0.0159 (11)
O70.0921 (15)0.0609 (13)0.0555 (12)0.0106 (10)0.0132 (10)0.0171 (10)
C10.0443 (15)0.0538 (17)0.0588 (16)0.0016 (13)0.0075 (13)0.0077 (13)
C20.0421 (14)0.0471 (15)0.0507 (14)0.0015 (11)0.0061 (12)0.0062 (12)
O20.0450 (11)0.0735 (14)0.1168 (17)0.0146 (10)0.0145 (11)0.0202 (12)
C50.0444 (15)0.0568 (17)0.0662 (17)0.0019 (13)0.0165 (13)0.0060 (14)
O30.0516 (12)0.0812 (14)0.1071 (16)0.0047 (10)0.0327 (11)0.0130 (12)
C70.0471 (16)0.0622 (17)0.0655 (17)0.0077 (13)0.0070 (14)0.0077 (14)
C40.0475 (16)0.0589 (18)0.092 (2)0.0117 (13)0.0143 (15)0.0122 (16)
C60.0594 (18)0.0560 (17)0.0636 (17)0.0009 (13)0.0137 (14)0.0081 (13)
C30.0474 (16)0.0486 (15)0.0761 (19)0.0017 (12)0.0137 (14)0.0067 (13)
C190.0523 (15)0.0430 (14)0.0625 (17)0.0021 (12)0.0051 (13)0.0009 (12)
C180.110 (2)0.0468 (17)0.0551 (17)0.0088 (16)0.0145 (17)0.0071 (13)
C200.091 (2)0.065 (2)0.0461 (15)0.0022 (16)0.0145 (15)0.0004 (14)
C80.069 (2)0.108 (3)0.095 (2)0.0141 (19)0.0372 (19)0.009 (2)
C170.097 (2)0.0520 (17)0.079 (2)0.0267 (16)0.0081 (18)0.0102 (15)
Geometric parameters (Å, º) top
O4—C91.256 (3)C1—O21.209 (3)
C10—C111.377 (3)C1—C21.476 (3)
C10—C151.389 (3)C2—C71.379 (3)
C10—C91.496 (3)C2—C31.384 (3)
O6—C131.364 (3)C5—O31.362 (3)
O6—C161.425 (3)C5—C61.376 (3)
C12—C131.369 (3)C5—C41.377 (4)
C12—C111.383 (3)O3—C81.424 (3)
C12—H12A0.9300C7—C61.379 (3)
C14—C151.367 (3)C7—H7A0.9300
C14—C131.384 (3)C4—C31.374 (3)
C14—H14A0.9300C4—H4A0.9300
O5—C91.246 (3)C6—H6A0.9300
C15—H15A0.9300C3—H3A0.9300
C11—H11A0.9300C19—C201.487 (3)
C16—H16A0.9600C19—H19A0.9700
C16—H16B0.9600C19—H19B0.9700
C16—H16C0.9600C18—C171.490 (4)
O1W—H1WA0.8204C18—H18A0.9700
O1W—H1WB0.8203C18—H18B0.9700
N1—C181.474 (3)C20—H20A0.9700
N1—C191.478 (3)C20—H20B0.9700
N1—H1A0.9004C8—H8A0.9600
N1—H1B0.9004C8—H8B0.9600
O1—C11.315 (3)C8—H8C0.9600
O1—H10.8206C17—H17A0.9700
O7—C201.411 (3)C17—H17B0.9700
O7—C171.412 (3)
C11—C10—C15117.5 (2)C6—C5—C4119.7 (2)
C11—C10—C9121.9 (2)C5—O3—C8118.2 (2)
C15—C10—C9120.5 (2)C2—C7—C6121.5 (2)
C13—O6—C16118.19 (19)C2—C7—H7A119.3
C13—C12—C11119.6 (2)C6—C7—H7A119.3
C13—C12—H12A120.2C3—C4—C5120.8 (2)
C11—C12—H12A120.2C3—C4—H4A119.6
C15—C14—C13119.9 (2)C5—C4—H4A119.6
C15—C14—H14A120.1C5—C6—C7119.3 (2)
C13—C14—H14A120.1C5—C6—H6A120.3
O6—C13—C12125.0 (2)C7—C6—H6A120.3
O6—C13—C14115.1 (2)C4—C3—C2120.1 (2)
C12—C13—C14119.8 (2)C4—C3—H3A120.0
C14—C15—C10121.5 (2)C2—C3—H3A120.0
C14—C15—H15A119.2N1—C19—C20109.8 (2)
C10—C15—H15A119.2N1—C19—H19A109.7
C10—C11—C12121.7 (2)C20—C19—H19A109.7
C10—C11—H11A119.1N1—C19—H19B109.7
C12—C11—H11A119.1C20—C19—H19B109.7
O5—C9—O4123.9 (2)H19A—C19—H19B108.2
O5—C9—C10117.0 (2)N1—C18—C17110.0 (2)
O4—C9—C10119.1 (2)N1—C18—H18A109.7
O6—C16—H16A109.5C17—C18—H18A109.7
O6—C16—H16B109.5N1—C18—H18B109.7
H16A—C16—H16B109.5C17—C18—H18B109.7
O6—C16—H16C109.5H18A—C18—H18B108.2
H16A—C16—H16C109.5O7—C20—C19112.0 (2)
H16B—C16—H16C109.5O7—C20—H20A109.2
H1WA—O1W—H1WB108.6C19—C20—H20A109.2
C18—N1—C19110.12 (19)O7—C20—H20B109.2
C18—N1—H1A109.9C19—C20—H20B109.2
C19—N1—H1A109.6H20A—C20—H20B107.9
C18—N1—H1B109.0O3—C8—H8A109.5
C19—N1—H1B106.9O3—C8—H8B109.5
H1A—N1—H1B111.3H8A—C8—H8B109.5
C1—O1—H1109.2O3—C8—H8C109.5
C20—O7—C17109.6 (2)H8A—C8—H8C109.5
O2—C1—O1122.8 (2)H8B—C8—H8C109.5
O2—C1—C2122.7 (3)O7—C17—C18111.7 (2)
O1—C1—C2114.5 (2)O7—C17—H17A109.3
C7—C2—C3118.6 (2)C18—C17—H17A109.3
C7—C2—C1118.9 (2)O7—C17—H17B109.3
C3—C2—C1122.4 (2)C18—C17—H17B109.3
O3—C5—C6124.1 (2)H17A—C17—H17B107.9
O3—C5—C4116.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.901.752.628 (3)164
N1—H1B···O20.901.962.837 (3)163
O1—H1···O1Wi0.821.762.579 (2)173
O1W—H1WA···O40.821.912.714 (2)167
O1W—H1WB···O4ii0.821.912.712 (3)164
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C8H7O3·C8H8O3·H2O
Mr409.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)21.874 (4), 11.753 (2), 8.3618 (17)
β (°) 100.63 (3)
V3)2112.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21489, 4842, 2453
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.162, 1.03
No. of reflections4842
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.901.752.628 (3)164
N1—H1B···O20.901.962.837 (3)163
O1—H1···O1Wi0.821.762.579 (2)173
O1W—H1WA···O40.821.912.714 (2)167
O1W—H1WB···O4ii0.821.912.712 (3)164
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the start-up fund of Anyang Institute of Technology.

References

First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds