organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-3-methyl-1H-indole

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-andrews.ac.uk

(Received 27 May 2011; accepted 2 June 2011; online 11 June 2011)

The indole N—H hydrogen in the title compound, C15H12FN, does not display classical hydrogen bonding. Rather it forms an interaction with the π system of an adjacent indole, resulting in weakly inter­acting chains along the [001] direction.

Related literature

The title compound has previously been prepared by Buu-Hoi & Jacquignon (1949[Buu-Hoi, N.-H. & Jacquignon, P. (1949). Recl. Trav. Chim. Pays-Bas, 68, 781-788.]) and by Kraus & Guo (2009[Kraus, G. A. & Guo, H. (2009). J. Org. Chem. 74, 5337-5341.]). For the synthesis of the starting material, 4-fluoro-N-(2-oxo-2-phenyl­eth­yl)benzamide, see: Moriya et al. (1986[Moriya, T., Takabe, S., Maeda, S., Matsumoto, K., Takashima, K., Mori, T. & Takeyama, S. (1986). J. Med. Chem. 29, 333-341.]). There are no structures of closely related compounds in the literature. For some similar compounds, see: Schmelter et al. (1973[Schmelter, B., Bradaczek, H. & Luger, P. (1973). Acta Cryst. B29, 971-976.]); Konno et al. (2004[Konno, T., Chae, J., Ishihara, T. & Yamanaka, H. (2004). J. Org. Chem. 69, 8258-8265.]); Kumar & Liu (2006[Kumar, M. P. & Liu, R.-S. (2006). J. Org. Chem. 71, 4951-4955.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12FN

  • Mr = 225.26

  • Monoclinic, P 21 /c

  • a = 7.790 (3) Å

  • b = 17.125 (6) Å

  • c = 8.811 (4) Å

  • β = 110.274 (9)°

  • V = 1102.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.706, Tmax = 1.000

  • 7380 measured reflections

  • 2361 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.195

  • S = 1.07

  • 2361 reflections

  • 160 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cgi 0.94 (2) 2.99 (2) 3.791 (2) 143 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The previously known title compound (Buu-Hoi & Jacquignon, 1949 and Kraus & Guo, 2009) has been synthesized by a new route from Woollins' reagent and 4-fluoro-N-(2-oxo-2-phenylethyl)benzamide. The structure of the compound is not closely related to any known structures; however, among those structures showing similarities (Schmelter et al., 1973, Konno et al., 2004, and Kumar & Liu, 2006) the indole N—H shows a tendency toward interactions with π systems, rather than conventional hydrogen bonding, similar to that observed in the title compound.

Related literature top

The title compound has previously been prepared by Buu-Hoi & Jacquignon (1949) and by Kraus & Guo (2009). For the synthesis of the starting material, 4-fluoro-N-(2-oxo-2-phenylethyl)benzamide, see: Moriya et al. (1986). There are no structures of closely related compounds in the literature. For some of the closest related, see: Schmelter et al. (1973); Konno et al. (2004); Kumar & Liu (2006).

Experimental top

A suspension of 4-fluoro-N-(2-oxo-2-phenylethyl)benzamide (0.26 g, 1.0 mmol, Moriya et al.1986) and Woollins' reagent (0.54 g, 1.0 mmol) in 20 ml of dry toluene was refluxed for 7 h. Following cooling to room temperature and removal of solvent in vacuuo the residue was purified by silica gel column chromatography (dichloromethane eluent) to give the title compound as a bright grey solid (0.140 g, 62%). Crystals suitable for X-ray structure determination were obtained from the diffusion of hexane into a dichloromethane solution of the title compound. M.p. 140 - 141 °C. Selected IR (KBr, cm-1): 3423(s, NH), 1563(m), 1458(m), 1332(m), 1304(m), 1218(s), 1154(m), 838(s), 746(s), 468(m). 1H NMR (CD2Cl2, δ), 8.07 (s, 1H, NH), 7.56 (m, 2H, ArH), 7.35 (d, J = 7.7 Hz, 1H, ArH), 7.22–7.09 (m, 5H, ArH), 2.42 (s, 3H, CH3) p.p.m.. 13C NMR (CD2Cl2, δ), 164.0 (C—F), 135.9, 133.1, 129.6, 129.4, 122.3, 119.5, 118.9, 115.9, 115.6, 110.7, 108.5, 9.4 (CH3) p.p.m.. MS (CI+, m/z), 226 [M+H]+. MS (EI+, m/z), 225 [M]+. Accurate mass measurement [EI+, m/z]: 224.0870 [M—H]+, calculated mass for C15H11NF: 224.0870.

Refinement top

The NH hydrogen atom was located from the difference fourier map and refined isotropically subject to a distance restraint (N—H = 0.98 Å). Carbon-bound H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms and 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, phenyl H atoms) or Uiso(H) = 1.5 Ueq (parent atom, methyl H atoms).

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
2-(4-Fluorophenyl)-3-methyl-1H-indole top
Crystal data top
C15H12FNF(000) = 472
Mr = 225.26Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3217 reflections
a = 7.790 (3) Åθ = 2.4–28.3°
b = 17.125 (6) ŵ = 0.09 mm1
c = 8.811 (4) ÅT = 93 K
β = 110.274 (9)°Platelet, colorless
V = 1102.7 (8) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2361 independent reflections
Radiation source: rotating anode1703 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.049
Detector resolution: 14.7059 pixels mm-1θmax = 28.7°, θmin = 2.4°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
k = 1623
Tmin = 0.706, Tmax = 1.000l = 1110
7380 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195 w = 1/[σ2(Fo2) + (0.1147P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2361 reflectionsΔρmax = 0.31 e Å3
160 parametersΔρmin = 0.21 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.052 (13)
Crystal data top
C15H12FNV = 1102.7 (8) Å3
Mr = 225.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.790 (3) ŵ = 0.09 mm1
b = 17.125 (6) ÅT = 93 K
c = 8.811 (4) Å0.25 × 0.20 × 0.15 mm
β = 110.274 (9)°
Data collection top
Rigaku Mercury CCD
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2010)
1703 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 1.000Rint = 0.049
7380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0651 restraint
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
2361 reflectionsΔρmin = 0.21 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. A distance restraint was applied to the N—H bond.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.44463 (18)0.36586 (7)0.14270 (16)0.0629 (5)
N10.1358 (2)0.33607 (9)0.5104 (2)0.0416 (5)
H10.190 (3)0.3064 (13)0.416 (2)0.070 (7)*
C10.0281 (2)0.37720 (10)0.5467 (2)0.0373 (5)
C20.0708 (2)0.41011 (10)0.6983 (2)0.0392 (5)
C30.0707 (2)0.38743 (10)0.7584 (2)0.0386 (5)
C40.1007 (3)0.40028 (10)0.9045 (2)0.0427 (5)
H40.01640.43050.98780.051*
C50.2529 (3)0.36883 (11)0.9262 (2)0.0456 (5)
H50.27250.37671.02560.055*
C60.3796 (3)0.32527 (11)0.8028 (2)0.0470 (5)
H60.48540.30530.81950.056*
C70.3545 (2)0.31077 (11)0.6581 (2)0.0445 (5)
H70.44040.28090.57540.053*
C80.1987 (2)0.34150 (10)0.6377 (2)0.0392 (5)
C90.2314 (3)0.46041 (11)0.7870 (2)0.0466 (5)
H9A0.33950.44210.76480.070*
H9B0.25450.45740.90340.070*
H9C0.20520.51460.75070.070*
C100.1309 (2)0.37612 (10)0.4355 (2)0.0379 (5)
C110.1282 (2)0.30989 (11)0.3413 (2)0.0420 (5)
H110.05430.26650.34620.050*
C120.2309 (2)0.30642 (11)0.2413 (2)0.0456 (5)
H120.22740.26160.17660.055*
C130.3388 (3)0.36986 (12)0.2380 (2)0.0459 (5)
C140.3432 (3)0.43669 (11)0.3255 (2)0.0446 (5)
H140.41660.47990.31880.054*
C150.2382 (2)0.43944 (10)0.4235 (2)0.0415 (5)
H150.23900.48540.48400.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0641 (9)0.0696 (9)0.0655 (9)0.0056 (7)0.0357 (7)0.0017 (7)
N10.0344 (9)0.0434 (9)0.0440 (10)0.0072 (6)0.0099 (7)0.0019 (8)
C10.0319 (9)0.0299 (8)0.0474 (11)0.0007 (7)0.0101 (8)0.0018 (8)
C20.0325 (9)0.0340 (10)0.0482 (11)0.0003 (7)0.0104 (8)0.0014 (8)
C30.0349 (9)0.0319 (9)0.0461 (11)0.0048 (7)0.0104 (8)0.0052 (8)
C40.0434 (11)0.0340 (10)0.0484 (12)0.0027 (8)0.0128 (9)0.0020 (9)
C50.0476 (12)0.0420 (11)0.0487 (12)0.0023 (8)0.0183 (10)0.0052 (9)
C60.0396 (11)0.0448 (11)0.0579 (13)0.0000 (8)0.0187 (9)0.0100 (10)
C70.0363 (10)0.0451 (11)0.0479 (12)0.0021 (8)0.0093 (9)0.0062 (9)
C80.0322 (9)0.0367 (10)0.0453 (11)0.0011 (7)0.0091 (8)0.0038 (9)
C90.0388 (10)0.0448 (11)0.0523 (12)0.0058 (8)0.0107 (9)0.0037 (10)
C100.0315 (9)0.0369 (10)0.0412 (11)0.0024 (7)0.0071 (8)0.0024 (8)
C110.0378 (10)0.0382 (10)0.0450 (11)0.0014 (7)0.0080 (8)0.0001 (9)
C120.0424 (11)0.0450 (12)0.0444 (12)0.0038 (8)0.0085 (9)0.0039 (9)
C130.0397 (11)0.0548 (12)0.0440 (11)0.0073 (9)0.0156 (9)0.0043 (10)
C140.0371 (10)0.0420 (11)0.0533 (12)0.0007 (8)0.0139 (9)0.0079 (9)
C150.0353 (10)0.0356 (10)0.0504 (11)0.0021 (7)0.0106 (8)0.0006 (9)
Geometric parameters (Å, º) top
F1—C131.367 (2)C7—C81.391 (3)
N1—C81.374 (2)C7—H70.9500
N1—C11.395 (2)C9—H9A0.9800
N1—H10.944 (16)C9—H9B0.9800
C1—C21.380 (3)C9—H9C0.9800
C1—C101.465 (3)C10—C151.395 (3)
C2—C31.432 (2)C10—C111.402 (3)
C2—C91.497 (3)C11—C121.382 (3)
C3—C41.403 (3)C11—H110.9500
C3—C81.417 (3)C12—C131.380 (3)
C4—C51.375 (3)C12—H120.9500
C4—H40.9500C13—C141.374 (3)
C5—C61.403 (3)C14—C151.381 (3)
C5—H50.9500C14—H140.9500
C6—C71.378 (3)C15—H150.9500
C6—H60.9500
C8—N1—C1109.61 (16)C7—C8—C3122.10 (18)
C8—N1—H1125.6 (14)C2—C9—H9A109.5
C1—N1—H1124.7 (14)C2—C9—H9B109.5
C2—C1—N1108.81 (16)H9A—C9—H9B109.5
C2—C1—C10130.42 (16)C2—C9—H9C109.5
N1—C1—C10120.63 (17)H9A—C9—H9C109.5
C1—C2—C3106.81 (16)H9B—C9—H9C109.5
C1—C2—C9128.14 (17)C15—C10—C11118.04 (17)
C3—C2—C9125.05 (17)C15—C10—C1121.45 (16)
C4—C3—C8118.57 (17)C11—C10—C1120.48 (16)
C4—C3—C2133.71 (18)C12—C11—C10121.30 (17)
C8—C3—C2107.71 (17)C12—C11—H11119.3
C5—C4—C3119.44 (18)C10—C11—H11119.3
C5—C4—H4120.3C13—C12—C11118.10 (18)
C3—C4—H4120.3C13—C12—H12120.9
C4—C5—C6120.67 (18)C11—C12—H12120.9
C4—C5—H5119.7F1—C13—C14118.92 (17)
C6—C5—H5119.7F1—C13—C12118.33 (17)
C7—C6—C5121.69 (18)C14—C13—C12122.75 (19)
C7—C6—H6119.2C13—C14—C15118.33 (18)
C5—C6—H6119.2C13—C14—H14120.8
C6—C7—C8117.49 (18)C15—C14—H14120.8
C6—C7—H7121.3C14—C15—C10121.43 (18)
C8—C7—H7121.3C14—C15—H15119.3
N1—C8—C7130.84 (17)C10—C15—H15119.3
N1—C8—C3107.05 (16)
C8—N1—C1—C20.5 (2)C4—C3—C8—N1178.33 (15)
C8—N1—C1—C10175.64 (15)C2—C3—C8—N10.56 (19)
N1—C1—C2—C30.9 (2)C4—C3—C8—C71.7 (3)
C10—C1—C2—C3174.81 (17)C2—C3—C8—C7179.37 (16)
N1—C1—C2—C9178.84 (17)C2—C1—C10—C1535.0 (3)
C10—C1—C2—C95.5 (3)N1—C1—C10—C15149.74 (17)
C1—C2—C3—C4177.78 (19)C2—C1—C10—C11143.0 (2)
C9—C2—C3—C42.5 (3)N1—C1—C10—C1132.2 (2)
C1—C2—C3—C80.9 (2)C15—C10—C11—C121.1 (3)
C9—C2—C3—C8178.83 (16)C1—C10—C11—C12176.98 (16)
C8—C3—C4—C50.6 (3)C10—C11—C12—C130.8 (3)
C2—C3—C4—C5179.09 (18)C11—C12—C13—F1178.20 (17)
C3—C4—C5—C61.1 (3)C11—C12—C13—C142.2 (3)
C4—C5—C6—C71.6 (3)F1—C13—C14—C15178.86 (16)
C5—C6—C7—C80.5 (3)C12—C13—C14—C151.5 (3)
C1—N1—C8—C7179.89 (19)C13—C14—C15—C100.5 (3)
C1—N1—C8—C30.0 (2)C11—C10—C15—C141.8 (3)
C6—C7—C8—N1178.87 (18)C1—C10—C15—C14176.27 (17)
C6—C7—C8—C31.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cgi0.94 (2)2.99 (2)3.791 (2)143 (2)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H12FN
Mr225.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)7.790 (3), 17.125 (6), 8.811 (4)
β (°) 110.274 (9)
V3)1102.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2010)
Tmin, Tmax0.706, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7380, 2361, 1703
Rint0.049
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.195, 1.07
No. of reflections2361
No. of parameters160
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: CrystalClear (Rigaku, 2010), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cgi0.944 (16)2.99 (2)3.791 (2)143.4 (16)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to the University of St Andrews and the Engineering and Physical Science Research Council (EPSRC, UK) for financial support.

References

First citationBuu-Hoi, N.-H. & Jacquignon, P. (1949). Recl. Trav. Chim. Pays-Bas, 68, 781–788.  CAS Google Scholar
First citationKonno, T., Chae, J., Ishihara, T. & Yamanaka, H. (2004). J. Org. Chem. 69, 8258–8265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKraus, G. A. & Guo, H. (2009). J. Org. Chem. 74, 5337–5341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, M. P. & Liu, R.-S. (2006). J. Org. Chem. 71, 4951–4955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoriya, T., Takabe, S., Maeda, S., Matsumoto, K., Takashima, K., Mori, T. & Takeyama, S. (1986). J. Med. Chem. 29, 333–341.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2010). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchmelter, B., Bradaczek, H. & Luger, P. (1973). Acta Cryst. B29, 971–976.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds