organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­carboxypyridinium fluoride

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Chemical Engineering, Huizhou University, Huizhou 516007, People's Republic of China
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 June 2011; accepted 4 June 2011; online 18 June 2011)

The cation of the title salt, C7H6NO4+.F, lies on a twofold rotation axis that passes through the N and 4-C atoms of the pyridine ring; the carb­oxy­lic acid substituent features unambiguous carbon–oxygen single and double bonds. The fluoride ion is a hydrogen-bond acceptor to two hy­droxy and one amino groups, these O—H⋯F and N—H⋯F hydrogen bonds leading to the formation of a layer structure parallel to the ab plane. The F atom lies on a position of 2 site symmetry.

Related literature

For the crystal structure of pyridine-3,5-dicarb­oxy­lic acid, see: Cowan et al. (2005[Cowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2005). Acta Cryst. B61, 724-730.]); Takusagawa et al. (1973[Takusagawa, F., Hirotsu, K. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, pp. 2292-2294.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6NO4+·F

  • Mr = 187.13

  • Monoclinic, C 2/c

  • a = 11.3959 (14) Å

  • b = 11.4503 (14) Å

  • c = 6.1601 (7) Å

  • β = 104.197 (2)°

  • V = 779.26 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.746

  • 2354 measured reflections

  • 883 independent reflections

  • 750 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.105

  • S = 1.11

  • 883 reflections

  • 67 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F1 0.86 (1) 1.60 (1) 2.458 (1) 176 (2)
N1—H2⋯F1i 0.88 (1) 1.68 (1) 2.563 (2) 180
Symmetry code: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The organic salt was the crystalline product obtained in a hydrothermal reaction involving molybdic acid, hydrogen fluoride and pyridine-3,5-dicarboxylic acid; the reaction merely involved the protonation of the carboxylic acid by hydrogen fluoride. The parent carboxylic acid itself displays short O–H···O hydrogen bonds (Cowan et al., 2005; Takusagawa et al., 1973). The hydrogen fluoride salt, C7H6NO4+ F- (Scheme I, Fig. 1), lies on a twofold rotation axis that passes through the pyridine ring; the carboxylic acid substituent features unambiguous carbon-oxygen single- and double-bonds [1.306 (1), 1.207 (1) Å]. The fluoride ion is hydrogen bond acceptor to two hydroxy and one amino groups, these O–H···F and N–H···F hydrogen bonds leading to the formation of a layer structure parallel to the ab plane (Fig. 2).

Related literature top

For the crystal structure of pyridine-3,5-dicarboxylic acid, see: Cowan et al. (2005); Takusagawa et al. (1973).

Experimental top

To a solution of molybdic acid, H2MoO4 (1 mmol) in water (10 ml) was added 3,5-pyridinedicarboxylic acid (5 mmol). The mixture was placed in a 23 ml, Teflon-lined, stainless steel Parr bomb. Several drops of hydrofluoric acid were added. The bomb was heated at 373 for 3 days. It was then cooled to room temperature at 5 K per hour. Yellow block-shaped crystals were obtained in about 50% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C7H6NO4+ F- at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled ones by –x, y, 3/2 - z.
[Figure 2] Fig. 2. Layer structure.
3,5-Dicarboxypyridinium fluoride top
Crystal data top
C7H6NO4+·FF(000) = 384
Mr = 187.13Dx = 1.595 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1129 reflections
a = 11.3959 (14) Åθ = 2.6–28.4°
b = 11.4503 (14) ŵ = 0.15 mm1
c = 6.1601 (7) ÅT = 293 K
β = 104.197 (2)°Block, yellow
V = 779.26 (16) Å30.40 × 0.35 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
883 independent reflections
Radiation source: fine-focus sealed tube750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1014
Tmin = 0.686, Tmax = 0.746k = 1314
2354 measured reflectionsl = 85
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.1524P]
where P = (Fo2 + 2Fc2)/3
883 reflections(Δ/σ)max = 0.001
67 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.16 e Å3
Crystal data top
C7H6NO4+·FV = 779.26 (16) Å3
Mr = 187.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.3959 (14) ŵ = 0.15 mm1
b = 11.4503 (14) ÅT = 293 K
c = 6.1601 (7) Å0.40 × 0.35 × 0.25 mm
β = 104.197 (2)°
Data collection top
Bruker SMART APEX
diffractometer
883 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
750 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.746Rint = 0.012
2354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.29 e Å3
883 reflectionsΔρmin = 0.16 e Å3
67 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.50000.54662 (9)0.75000.0536 (4)
O10.30965 (8)0.64863 (8)0.74566 (19)0.0454 (3)
H10.3745 (12)0.6097 (17)0.747 (3)0.069 (6)*
O20.21589 (9)0.47552 (8)0.71733 (17)0.0428 (3)
H20.00000.8997 (9)0.75000.050 (6)*
N10.00000.82283 (12)0.75000.0346 (4)
C10.21620 (10)0.58059 (11)0.7326 (2)0.0321 (3)
C20.10381 (10)0.64621 (10)0.73953 (19)0.0294 (3)
C30.10135 (10)0.76662 (11)0.7394 (2)0.0328 (3)
H30.17010.80870.73200.039*
C40.00000.58621 (14)0.75000.0294 (4)
H40.00000.50500.75000.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0272 (6)0.0273 (6)0.1130 (11)0.0000.0301 (6)0.000
O10.0245 (5)0.0335 (5)0.0811 (7)0.0017 (4)0.0183 (5)0.0042 (5)
O20.0370 (6)0.0281 (5)0.0663 (7)0.0059 (4)0.0184 (5)0.0033 (4)
N10.0268 (7)0.0209 (7)0.0570 (9)0.0000.0121 (6)0.000
C10.0265 (6)0.0299 (6)0.0409 (7)0.0029 (5)0.0102 (5)0.0008 (5)
C20.0249 (6)0.0254 (6)0.0385 (6)0.0012 (4)0.0087 (5)0.0012 (4)
C30.0239 (6)0.0260 (6)0.0495 (7)0.0025 (4)0.0108 (5)0.0004 (5)
C40.0272 (8)0.0218 (7)0.0394 (9)0.0000.0085 (6)0.000
Geometric parameters (Å, º) top
O1—C11.306 (1)C1—C21.495 (2)
O1—H10.86 (1)C2—C31.379 (2)
O2—C11.207 (2)C2—C41.383 (1)
N1—C3i1.338 (1)C3—H30.9300
N1—C31.338 (1)C4—C2i1.383 (1)
N1—H20.88 (1)C4—H40.9300
C1—O1—H1112.1 (14)C3—C2—C1121.33 (11)
C3i—N1—C3122.48 (15)C4—C2—C1120.03 (11)
C3i—N1—H2118.76 (7)N1—C3—C2119.92 (11)
C3—N1—H2118.76 (7)N1—C3—H3120.0
O2—C1—O1125.90 (11)C2—C3—H3120.0
O2—C1—C2121.15 (11)C2—C4—C2i120.44 (15)
O1—C1—C2112.95 (11)C2—C4—H4119.8
C3—C2—C4118.62 (11)C2i—C4—H4119.8
O2—C1—C2—C3174.90 (12)C4—C2—C3—N10.20 (16)
O1—C1—C2—C35.39 (16)C1—C2—C3—N1178.73 (9)
O2—C1—C2—C46.18 (17)C3—C2—C4—C2i0.10 (8)
O1—C1—C2—C4173.53 (9)C1—C2—C4—C2i178.85 (11)
C3i—N1—C3—C20.10 (8)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.86 (1)1.60 (1)2.458 (1)176 (2)
N1—H2···F1ii0.88 (1)1.68 (1)2.563 (2)180
Symmetry code: (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC7H6NO4+·F
Mr187.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.3959 (14), 11.4503 (14), 6.1601 (7)
β (°) 104.197 (2)
V3)779.26 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
2354, 883, 750
Rint0.012
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.105, 1.11
No. of reflections883
No. of parameters67
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F10.86 (1)1.60 (1)2.458 (1)176 (2)
N1—H2···F1i0.88 (1)1.68 (1)2.563 (2)180
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

We thank Huizhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCowan, J. A., Howard, J. A. K., McIntyre, G. J., Lo, S. M.-F. & Williams, I. D. (2005). Acta Cryst. B61, 724–730.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakusagawa, F., Hirotsu, K. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, pp. 2292–2294.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds