metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua-μ3-citrato-praseodymium(III)] monohydrate]

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 June 2011; accepted 17 June 2011; online 25 June 2011)

In the coordination polymer, {[Pr(C6H5O7)(H2O)2]·H2O}n, seven of the nine coordination sites of the monocapped square-anti­prismatic geometry are occupied by three O atoms of the same citrate trianion (an O atom of the hy­droxy unit and the formally single-bond O atoms from two carboxyl units). Two other coordination sites are occupied by the O atoms of a chelating carboxyl unit of another citrate; one of these atoms is additionally involved in bridging. The seventh coordination site is occupied by the O atom of the formally double-bond O atom of a neighboring citrate. The remaining two coordination sites are occupied by water mol­ecules. The citrate functions in a μ3-bridging mode, connecting the metal atoms into a ribbon structure parallel to [010]. The structure is consolidated into a three-dimensional network by O—H⋯O hydrogen bonds.

Related literature

For isotypic [Eu(C6H5O7)(H2O)2]·H2O, see: Tang et al. (2011[Tang, S.-D., Deng, Y.-F. & Zhan, S.-Z. (2011). Chin. J. Struct. Chem. 30, 424-430.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr(C6H5O7)(H2O)2]·H2O

  • Mr = 384.06

  • Monoclinic, P 21 /n

  • a = 6.2645 (3) Å

  • b = 9.7356 (7) Å

  • c = 17.0425 (10) Å

  • β = 91.0672 (18)°

  • V = 1039.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.74 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.331, Tmax = 0.649

  • 9596 measured reflections

  • 2366 independent reflections

  • 2182 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.050

  • S = 1.18

  • 2366 reflections

  • 175 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O2i 0.83 (1) 1.72 (1) 2.536 (3) 167 (4)
O1w—H11⋯O2ii 0.84 (1) 1.84 (1) 2.666 (3) 169 (4)
O1w—H12⋯O3iii 0.84 (1) 1.89 (2) 2.692 (3) 159 (3)
O2w—H21⋯O1wiv 0.84 (1) 2.09 (2) 2.854 (4) 151 (4)
O2w—H22⋯O3w 0.84 (1) 1.89 (1) 2.718 (4) 168 (4)
O3w—H31⋯O6v 0.84 (1) 2.05 (2) 2.856 (4) 160 (6)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) -x, -y, -z+1; (v) x, y-1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A recent report describes the synthesis of Eu(H2O)2(C6H5O7).H2O, a citrate(3-) based coordination polymer that exhibits useful luminescence; the ribbon motif propagates along the a-axis and adjacent chains are linked by O–H···O hydrogen bonds into a three-dimensional network. The presence of manganese dichloride is crucial to the synthesis (Tang et al., 2011). The present Pr analog (Scheme I) is isostructural, the two compounds crystallizing with matching cell dimensions. In the coordination polymer, Pr(H2O)2(C6H5O7).H2O (Fig. 1), seven of the nine coordination sites a mono-capped square-antiprismatic geometry (Fig. 2) are occupied by three O atoms of the same citrate trianion (an O atom of the hydroxy unit and the formally single-bond O atoms from two carboxyl units). Two other coordination sites are occupied by the O atoms of a chelating carboxyl unit of another citrate; one of these atoms is additionally involved in bridging. The seventh coordination site is occupied by the O atom of the formally double-bond O atom of a neighboring citrate. The remaining two coordination sites of the are occupied by water molecules. The citrate functions in a µ3– bridging mode to connect the metal atoms into a ribbon structure. The structure is consolidated into a three-dimensional network by O–H···O hydrogen bonds (Table 1).

Related literature top

For isotypic Eu(H2O)2(C6H5O7).H2O, see: Tang et al. (2011).

Experimental top

Praseodymium oxide, Pr6O11 (0.341 g), was suspended in water (20 ml) and to the suspension was added manganese dichloride tetrahydrate (0.395 g, 2.0 mmol) and citric acid monohydrate (0.841 g, 4.0 mmol). The mixture was placed in a 25 ml, teflon-lined, stainless-steel Parr bomb. The bomb was heated at 393 K for 72 h. It was cooled to room temperature at 30 K an hour. Green crystals were isolated in 75% yield based on Pr6O11.

Refinement top

Carbon-bound H atoms treated as riding (C–H 0.97 Å) and their temperature factors were tied by a factor of 1.2 times. The hydroxy and water H atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and H···H 1.37±0.01 Å. Their temperature factors were tied by a factor of 1.5 times. The (5 6 3), (-6 6 1), (1 9 2), (4 10 2) and (6 7 3) reflections were omitted owing to bad disagreement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Pr(H2O)2(C6H5O7).H2O with the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Nine-coordinate geometry of PrIII.
Poly[[diaqua-µ3-citrato-praseodymium(III)] monohydrate] top
Crystal data top
[Pr(C6H5O7)(H2O)2]·H2OF(000) = 744
Mr = 384.06Dx = 2.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8369 reflections
a = 6.2645 (3) Åθ = 3.2–27.4°
b = 9.7356 (7) ŵ = 4.74 mm1
c = 17.0425 (10) ÅT = 293 K
β = 91.0672 (18)°Prism, light green
V = 1039.22 (11) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2366 independent reflections
Radiation source: fine-focus sealed tube2182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1210
Tmin = 0.331, Tmax = 0.649l = 2222
9596 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.P)2 + 1.4664P]
where P = (Fo2 + 2Fc2)/3
2366 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.76 e Å3
10 restraintsΔρmin = 0.81 e Å3
Crystal data top
[Pr(C6H5O7)(H2O)2]·H2OV = 1039.22 (11) Å3
Mr = 384.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2645 (3) ŵ = 4.74 mm1
b = 9.7356 (7) ÅT = 293 K
c = 17.0425 (10) Å0.30 × 0.15 × 0.10 mm
β = 91.0672 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2366 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2182 reflections with I > 2σ(I)
Tmin = 0.331, Tmax = 0.649Rint = 0.038
9596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02610 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.76 e Å3
2366 reflectionsΔρmin = 0.81 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.11415 (2)0.319324 (16)0.566983 (9)0.01012 (6)
O10.2224 (4)0.2466 (3)0.70094 (14)0.0212 (5)
O20.3108 (4)0.2315 (3)0.82649 (14)0.0245 (5)
O30.5035 (3)0.2913 (2)0.56851 (14)0.0195 (5)
O40.7923 (3)0.2852 (2)0.64591 (13)0.0150 (4)
O50.8717 (3)0.5316 (2)0.55742 (13)0.0166 (4)
O60.7309 (4)0.7354 (2)0.57242 (13)0.0185 (5)
O70.3381 (3)0.5013 (2)0.63152 (13)0.0138 (4)
H70.297 (6)0.574 (2)0.652 (2)0.021*
O1W0.1683 (3)0.2119 (3)0.47949 (14)0.0192 (5)
H110.172 (5)0.219 (4)0.4305 (6)0.029*
H120.289 (3)0.230 (4)0.4971 (18)0.029*
O2W0.1834 (4)0.0691 (3)0.56804 (16)0.0277 (6)
H210.147 (6)0.001 (3)0.543 (2)0.042*
H220.300 (4)0.054 (4)0.591 (2)0.042*
O3W0.5632 (6)0.0132 (4)0.6318 (2)0.0564 (10)
H310.617 (8)0.092 (2)0.626 (4)0.085*
H320.635 (8)0.042 (4)0.605 (3)0.085*
C10.3229 (5)0.2872 (3)0.76032 (18)0.0146 (6)
C20.4742 (5)0.4089 (3)0.75574 (17)0.0141 (6)
H2A0.60660.38490.78290.017*
H2B0.41180.48550.78360.017*
C30.6141 (5)0.3355 (3)0.62538 (18)0.0125 (6)
C40.5269 (4)0.4564 (3)0.67268 (17)0.0109 (6)
C50.6919 (5)0.5734 (3)0.67823 (17)0.0130 (6)
H5A0.62850.65130.70460.016*
H5B0.81340.54290.70970.016*
C60.7682 (4)0.6185 (3)0.59874 (17)0.0120 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00959 (9)0.01080 (10)0.00997 (9)0.00001 (6)0.00066 (6)0.00069 (6)
O10.0237 (12)0.0235 (13)0.0161 (12)0.0102 (10)0.0060 (9)0.0049 (9)
O20.0360 (13)0.0230 (13)0.0142 (12)0.0143 (11)0.0037 (10)0.0078 (10)
O30.0124 (11)0.0235 (13)0.0226 (13)0.0015 (9)0.0010 (9)0.0123 (10)
O40.0116 (10)0.0164 (11)0.0171 (11)0.0030 (9)0.0016 (8)0.0017 (9)
O50.0217 (11)0.0133 (11)0.0149 (11)0.0037 (9)0.0072 (8)0.0010 (9)
O60.0234 (12)0.0155 (12)0.0167 (12)0.0033 (9)0.0039 (9)0.0031 (9)
O70.0144 (10)0.0114 (11)0.0157 (11)0.0035 (8)0.0022 (8)0.0017 (8)
O1W0.0158 (11)0.0267 (13)0.0151 (12)0.0010 (10)0.0013 (8)0.0025 (10)
O2W0.0334 (14)0.0158 (13)0.0336 (15)0.0004 (11)0.0102 (11)0.0021 (11)
O3W0.056 (2)0.0331 (18)0.079 (3)0.0182 (16)0.0212 (18)0.0082 (18)
C10.0145 (14)0.0156 (16)0.0138 (15)0.0021 (12)0.0009 (11)0.0016 (12)
C20.0154 (14)0.0160 (16)0.0110 (14)0.0034 (12)0.0018 (11)0.0004 (12)
C30.0107 (14)0.0129 (15)0.0141 (15)0.0025 (11)0.0045 (11)0.0029 (11)
C40.0116 (13)0.0104 (14)0.0105 (14)0.0000 (11)0.0001 (10)0.0005 (11)
C50.0155 (14)0.0117 (15)0.0118 (14)0.0040 (12)0.0022 (10)0.0006 (11)
C60.0092 (13)0.0133 (16)0.0134 (14)0.0026 (11)0.0005 (10)0.0009 (11)
Geometric parameters (Å, º) top
Pr1—O12.473 (2)O6—Pr1ii2.637 (2)
Pr1—O32.454 (2)O7—C41.432 (3)
Pr1—O4i2.467 (2)O7—H70.834 (10)
Pr1—O5i2.568 (2)O1W—H110.84 (1)
Pr1—O5ii2.572 (2)O1W—H120.84 (1)
Pr1—O6ii2.637 (2)O2W—H210.84 (1)
Pr1—O72.502 (2)O2W—H220.84 (1)
Pr1—O1W2.520 (2)O3W—H310.84 (1)
Pr1—O2W2.474 (3)O3W—H320.85 (1)
O1—C11.246 (4)C1—C21.520 (4)
O2—C11.255 (4)C2—C41.531 (4)
O3—C31.257 (4)C2—H2A0.9700
O4—C31.262 (4)C2—H2B0.9700
O4—Pr1iii2.467 (2)C3—C41.533 (4)
O5—C61.284 (4)C4—C51.540 (4)
O5—Pr1iii2.568 (2)C5—C61.510 (4)
O5—Pr1ii2.572 (2)C5—H5A0.9700
O6—C61.244 (4)C5—H5B0.9700
O3—Pr1—O4i143.27 (8)C6—O5—Pr1ii96.06 (18)
O3—Pr1—O172.72 (8)Pr1iii—O5—Pr1ii118.48 (8)
O4i—Pr1—O170.79 (7)C6—O6—Pr1ii94.03 (18)
O3—Pr1—O2W73.53 (8)C4—O7—Pr1116.75 (17)
O4i—Pr1—O2W90.48 (8)C4—O7—H7108 (3)
O1—Pr1—O2W70.50 (9)Pr1—O7—H7128 (3)
O3—Pr1—O761.63 (7)Pr1—O1W—H11124 (3)
O4i—Pr1—O7108.24 (7)Pr1—O1W—H12109 (3)
O1—Pr1—O769.83 (7)H11—O1W—H12109 (2)
O2W—Pr1—O7126.67 (8)Pr1—O2W—H21139 (3)
O3—Pr1—O1W130.32 (7)Pr1—O2W—H22109 (3)
O4i—Pr1—O1W72.22 (7)H21—O2W—H22110 (2)
O1—Pr1—O1W127.21 (8)H31—O3W—H32107 (2)
O2W—Pr1—O1W73.54 (8)O1—C1—O2123.7 (3)
O7—Pr1—O1W159.37 (8)O1—C1—C2120.8 (3)
O3—Pr1—O5i132.58 (7)O2—C1—C2115.5 (3)
O4i—Pr1—O5i69.79 (7)C1—C2—C4115.4 (2)
O1—Pr1—O5i116.15 (8)C1—C2—H2A108.4
O2W—Pr1—O5i153.65 (8)C4—C2—H2A108.4
O7—Pr1—O5i77.53 (7)C1—C2—H2B108.4
O1W—Pr1—O5i83.60 (7)C4—C2—H2B108.4
O3—Pr1—O5ii91.25 (8)H2A—C2—H2B107.5
O4i—Pr1—O5ii124.51 (7)O3—C3—O4123.6 (3)
O1—Pr1—O5ii155.43 (7)O3—C3—C4118.1 (3)
O2W—Pr1—O5ii123.56 (8)O4—C3—C4118.3 (3)
O7—Pr1—O5ii86.28 (7)O7—C4—C2110.8 (2)
O1W—Pr1—O5ii77.36 (8)O7—C4—C3106.0 (2)
O5i—Pr1—O5ii61.52 (8)C2—C4—C3109.8 (2)
O3—Pr1—O6ii66.72 (7)O7—C4—C5110.6 (2)
O4i—Pr1—O6ii141.46 (7)C2—C4—C5108.8 (2)
O1—Pr1—O6ii132.42 (8)C3—C4—C5110.8 (2)
O2W—Pr1—O6ii74.95 (8)C6—C5—C4112.5 (2)
O7—Pr1—O6ii109.04 (7)C6—C5—H5A109.1
O1W—Pr1—O6ii69.47 (7)C4—C5—H5A109.1
O5i—Pr1—O6ii109.42 (7)C6—C5—H5B109.1
O5ii—Pr1—O6ii49.65 (7)C4—C5—H5B109.1
C1—O1—Pr1141.7 (2)H5A—C5—H5B107.8
C3—O3—Pr1120.28 (19)O6—C6—O5119.9 (3)
C3—O4—Pr1iii121.60 (19)O6—C6—C5122.0 (3)
C6—O5—Pr1iii143.1 (2)O5—C6—C5118.1 (3)
O3—Pr1—O1—C167.4 (4)Pr1—O3—C3—O4152.9 (2)
O4i—Pr1—O1—C1116.8 (4)Pr1—O3—C3—C426.6 (4)
O2W—Pr1—O1—C1145.6 (4)Pr1iii—O4—C3—O372.0 (4)
O7—Pr1—O1—C12.0 (3)Pr1iii—O4—C3—C4108.5 (3)
O1W—Pr1—O1—C1164.6 (3)Pr1—O7—C4—C283.4 (2)
O5i—Pr1—O1—C162.1 (4)Pr1—O7—C4—C335.7 (3)
O5ii—Pr1—O1—C116.1 (5)Pr1—O7—C4—C5155.86 (18)
O6ii—Pr1—O1—C199.8 (4)C1—C2—C4—O761.8 (3)
O4i—Pr1—O3—C349.7 (3)C1—C2—C4—C355.0 (3)
O1—Pr1—O3—C343.1 (2)C1—C2—C4—C5176.4 (3)
O2W—Pr1—O3—C3117.3 (2)O3—C3—C4—O76.7 (4)
O7—Pr1—O3—C332.9 (2)O4—C3—C4—O7173.7 (2)
O1W—Pr1—O3—C3167.6 (2)O3—C3—C4—C2113.0 (3)
O5i—Pr1—O3—C366.8 (3)O4—C3—C4—C266.5 (3)
O5ii—Pr1—O3—C3118.0 (2)O3—C3—C4—C5126.7 (3)
O6ii—Pr1—O3—C3162.4 (3)O4—C3—C4—C553.7 (4)
O3—Pr1—O7—C435.86 (18)O7—C4—C5—C663.2 (3)
O4i—Pr1—O7—C4105.51 (18)C2—C4—C5—C6175.0 (2)
O1—Pr1—O7—C444.86 (18)C3—C4—C5—C654.1 (3)
O2W—Pr1—O7—C40.7 (2)Pr1ii—O6—C6—O56.0 (3)
O1W—Pr1—O7—C4166.6 (2)Pr1ii—O6—C6—C5173.0 (2)
O5i—Pr1—O7—C4169.07 (19)Pr1iii—O5—C6—O6153.9 (2)
O5ii—Pr1—O7—C4129.30 (19)Pr1ii—O5—C6—O66.2 (3)
O6ii—Pr1—O7—C484.44 (19)Pr1iii—O5—C6—C527.1 (4)
Pr1—O1—C1—O2164.9 (2)Pr1ii—O5—C6—C5172.8 (2)
Pr1—O1—C1—C216.3 (5)Pr1iii—O5—C6—Pr1ii160.0 (3)
O1—C1—C2—C411.9 (4)C4—C5—C6—O6114.9 (3)
O2—C1—C2—C4167.0 (3)C4—C5—C6—O564.0 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2iv0.83 (1)1.72 (1)2.536 (3)167 (4)
O1w—H11···O2v0.84 (1)1.84 (1)2.666 (3)169 (4)
O1w—H12···O3i0.84 (1)1.89 (2)2.692 (3)159 (3)
O2w—H21···O1wvi0.84 (1)2.09 (2)2.854 (4)151 (4)
O2w—H22···O3w0.84 (1)1.89 (1)2.718 (4)168 (4)
O3w—H31···O6vii0.84 (1)2.05 (2)2.856 (4)160 (6)
Symmetry codes: (i) x1, y, z; (iv) x+1/2, y+1/2, z+3/2; (v) x1/2, y+1/2, z1/2; (vi) x, y, z+1; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Pr(C6H5O7)(H2O)2]·H2O
Mr384.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2645 (3), 9.7356 (7), 17.0425 (10)
β (°) 91.0672 (18)
V3)1039.22 (11)
Z4
Radiation typeMo Kα
µ (mm1)4.74
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.331, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
9596, 2366, 2182
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.050, 1.18
No. of reflections2366
No. of parameters175
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.81

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O2i0.83 (1)1.72 (1)2.536 (3)167 (4)
O1w—H11···O2ii0.84 (1)1.84 (1)2.666 (3)169 (4)
O1w—H12···O3iii0.84 (1)1.89 (2)2.692 (3)159 (3)
O2w—H21···O1wiv0.84 (1)2.09 (2)2.854 (4)151 (4)
O2w—H22···O3w0.84 (1)1.89 (1)2.718 (4)168 (4)
O3w—H31···O6v0.84 (1)2.05 (2)2.856 (4)160 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y, z+1; (v) x, y1, z.
 

Acknowledgements

We thank South China University of Technology and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, S.-D., Deng, Y.-F. & Zhan, S.-Z. (2011). Chin. J. Struct. Chem. 30, 424–430.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds