organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Hy­dr­oxy­benzyl­amino)­acetic acid

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
*Correspondence e-mail: wuwn08@hpu.edu.cn

(Received 4 June 2011; accepted 20 June 2011; online 25 June 2011)

There are two independent 2-(3-hy­droxy­benzyl­amino)­acetic acid mol­ecules, C9H11NO3, in the asymmetric unit of the title compound. The dihedral angle between the benzene rings of the two independent mol­ecules is 58.12 (4)°. The crystal packing is stablized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the anti-tumor and artificial nuclease activity of copper complexes with substituted amino acid ligands, see: Jia et al. (2010[Jia, L., Jiang, P., Xu, J., Hao, Z.-Y., Xu, X.-M., Chen, L.-H., Wu, J.-C., Tang, N., Wang, Q. & Vittal, J. J. (2010). Inorg. Chim. Acta, 363, 855-865.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11NO3

  • Mr = 181.19

  • Monoclinic, P c

  • a = 11.9779 (3) Å

  • b = 8.0267 (2) Å

  • c = 9.3835 (2) Å

  • β = 101.391 (2)°

  • V = 884.39 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.23 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]) Tmin = 0.980, Tmax = 0.988

  • 7436 measured reflections

  • 1999 independent reflections

  • 1815 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.134

  • S = 1.07

  • 1999 reflections

  • 235 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.86 2.25 2.891 (3) 132
O3—H3C⋯O2i 0.82 1.84 2.639 (4) 166
N2—H2C⋯O2ii 0.86 2.28 2.910 (3) 130
O6—H6A⋯O4iii 0.82 1.85 2.646 (4) 165
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, substituted amino acid complexes have received extensive attention because of primarily their biological and pharmaceutical activities (Lei Jia et al., 2010). As part of our studies of substituted amino acids, the title compound was synthesized and characterized by X-ray diffraction.

The asymmetric of the title compound, 2C9H11NO3, contains two independent 2-(3-hydroxybenzylamino)acetic acid molecules (Fig. 1). Each benzene ring is essentially planar [mean deviations of 0.0066 Å for ring C4—C9 and 0.0030 Å for ring C13—C18]. The torsion angles C12—N2 –C11—C10 and C2—N1—C3—C4 are -163.2 (2)° and -55.5 (3)°, respectively. The dihedral angle between the benzene rings in two independent amino acid molecules is 58.12 (4)°. In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds are helpful to stabilize the packing (Table 1, Fig. 2).

Related literature top

For the anti-tumor and artificial nuclease activity of copper complexes with substituted amino acid ligands, see: Jia et al. (2010).

Experimental top

To a clear solution of glycine (0.75 g, 10 mmol) and NaOH (0.40 g, 10 mmol) in a solvent mixture of water (10 mL) and methanol (20 mL), was added 3-hydroxy benzaldehyde (1.22 g, 10 mmol) and the resulting yellow solution was stirred for 3 h. After cooling to 273 K, a slight excess of NaBH4 (0.46 g, 12 mmol) was added. The yellow color slowly discharged after 20–30 min and the pH value was maintained 5–6 by addition of acetic acid. Colorless blocks of the title compound were obtained by slow evaporation of the reaction mixture.

Refinement top

We have merged Friedel-pair reflections before final refinement, as there is a light atom structure (heaviest element lighter than silicon, with Mo radiation). All H atoms were placed in calculated positions, with C—H = 0.93 and 0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å, and were thereafter treated as riding, with Uiso(H) values of 1.5Ueq(O) for hydoxyl group and 1.2Ueq(C,N) for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with the displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal packing for the title compound [hydrogen bonds shown as dashed lines, with symmetry codes: (i) x, -y + 1, z - 1/2; (ii) x, y, z - 1; (iii) x, -y, z - 1/2.].
2-(3-Hydroxybenzylamino)acetic acid top
Crystal data top
C9H11NO3F(000) = 384
Mr = 181.19Dx = 1.361 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 3325 reflections
a = 11.9779 (3) Åθ = 3.1–26.5°
b = 8.0267 (2) ŵ = 0.10 mm1
c = 9.3835 (2) ÅT = 296 K
β = 101.391 (2)°Block, colorless
V = 884.39 (4) Å30.23 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1999 independent reflections
Radiation source: fine-focus sealed tube1815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1514
Tmin = 0.980, Tmax = 0.988k = 1010
7436 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0892P)2 + 0.1326P]
where P = (Fo2 + 2Fc2)/3
1999 reflections(Δ/σ)max = 0.007
235 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.32 e Å3
Crystal data top
C9H11NO3V = 884.39 (4) Å3
Mr = 181.19Z = 4
Monoclinic, PcMo Kα radiation
a = 11.9779 (3) ŵ = 0.10 mm1
b = 8.0267 (2) ÅT = 296 K
c = 9.3835 (2) Å0.23 × 0.16 × 0.12 mm
β = 101.391 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1999 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1815 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.022
7436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
1999 reflectionsΔρmin = 0.32 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.55759 (19)0.0934 (3)0.6066 (2)0.0384 (5)
N10.6095 (2)0.2130 (3)0.2543 (3)0.0336 (5)
H1A0.54050.20990.20630.040*
C10.5447 (3)0.0976 (4)0.4692 (3)0.0359 (6)
C40.7774 (3)0.3969 (3)0.2604 (3)0.0345 (6)
O30.7554 (3)0.8513 (3)0.2813 (4)0.0615 (8)
H3C0.69360.85140.22510.092*
C90.8794 (3)0.3737 (4)0.3539 (5)0.0491 (9)
H90.90790.26650.37280.059*
O10.4643 (3)0.0409 (5)0.3829 (3)0.0810 (12)
H1B0.48640.00580.31120.121*
C50.7337 (3)0.5573 (3)0.2338 (3)0.0354 (6)
H50.66440.57390.17050.042*
C30.7094 (3)0.2534 (4)0.1859 (3)0.0396 (7)
H3A0.68240.28060.08420.048*
H3B0.75810.15610.19060.048*
C60.7942 (3)0.6920 (4)0.3025 (4)0.0420 (7)
C20.6411 (3)0.1792 (4)0.4121 (3)0.0353 (6)
H2A0.66140.28300.46360.042*
H2B0.70730.10690.43090.042*
C70.8982 (4)0.6685 (5)0.3941 (5)0.0542 (9)
H70.93950.75950.43750.065*
C80.9407 (3)0.5093 (5)0.4211 (5)0.0598 (11)
H81.01020.49260.48410.072*
O40.4311 (2)0.4024 (3)0.0722 (2)0.0387 (5)
N20.3782 (2)0.2918 (3)0.3084 (3)0.0320 (5)
H2C0.44700.29600.32240.038*
C100.4428 (3)0.4038 (4)0.0589 (3)0.0353 (6)
O60.2384 (3)0.3410 (3)0.3402 (4)0.0595 (8)
H6A0.29810.34140.37040.089*
C130.2093 (3)0.1109 (3)0.3881 (3)0.0356 (6)
O50.5208 (3)0.4690 (5)0.1059 (3)0.0742 (10)
H5A0.49700.50180.18910.111*
C140.2554 (3)0.0481 (4)0.3873 (3)0.0355 (6)
H140.32500.06430.41510.043*
C110.3485 (3)0.3195 (4)0.1654 (3)0.0360 (6)
H11A0.33130.21320.12550.043*
H11B0.28040.38780.17770.043*
C180.1069 (3)0.1349 (4)0.3470 (5)0.0503 (8)
H180.07640.24150.34760.060*
C120.2773 (3)0.2555 (4)0.4279 (3)0.0400 (7)
H12A0.30350.22990.51690.048*
H12B0.22900.35340.44540.048*
C150.1966 (3)0.1827 (4)0.3447 (4)0.0392 (7)
C160.0943 (3)0.1573 (5)0.3026 (5)0.0509 (9)
H160.05580.24730.27260.061*
C170.0483 (3)0.0004 (5)0.3043 (6)0.0575 (10)
H170.02150.01550.27720.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0484 (12)0.0335 (11)0.0343 (11)0.0017 (9)0.0108 (9)0.0037 (8)
N10.0403 (13)0.0270 (11)0.0340 (12)0.0019 (10)0.0086 (10)0.0040 (10)
C10.0409 (15)0.0337 (14)0.0340 (15)0.0043 (11)0.0098 (12)0.0009 (11)
C40.0388 (14)0.0299 (13)0.0394 (14)0.0002 (11)0.0191 (12)0.0034 (11)
O30.0655 (16)0.0237 (10)0.083 (2)0.0011 (11)0.0151 (14)0.0043 (11)
C90.0442 (18)0.0337 (15)0.071 (2)0.0074 (13)0.0154 (17)0.0101 (15)
O10.0679 (18)0.133 (3)0.0427 (14)0.054 (2)0.0118 (13)0.0031 (17)
C50.0395 (15)0.0279 (14)0.0384 (15)0.0006 (11)0.0070 (12)0.0048 (12)
C30.0541 (18)0.0300 (14)0.0400 (17)0.0011 (12)0.0220 (14)0.0007 (11)
C60.0466 (17)0.0289 (14)0.0492 (18)0.0003 (12)0.0064 (14)0.0031 (13)
C20.0382 (14)0.0379 (15)0.0320 (13)0.0036 (12)0.0120 (11)0.0017 (11)
C70.055 (2)0.0395 (17)0.063 (2)0.0074 (15)0.0017 (17)0.0021 (16)
C80.0396 (17)0.051 (2)0.081 (3)0.0002 (15)0.0062 (17)0.0135 (19)
O40.0513 (13)0.0331 (11)0.0325 (10)0.0013 (9)0.0099 (9)0.0041 (8)
N20.0355 (12)0.0259 (10)0.0353 (12)0.0016 (9)0.0092 (10)0.0023 (9)
C100.0418 (15)0.0323 (13)0.0319 (14)0.0026 (11)0.0077 (12)0.0033 (11)
O60.0686 (17)0.0265 (10)0.093 (2)0.0015 (11)0.0384 (16)0.0071 (12)
C130.0411 (15)0.0299 (14)0.0325 (14)0.0031 (11)0.0009 (11)0.0027 (11)
O50.0715 (18)0.109 (3)0.0444 (15)0.0508 (19)0.0164 (13)0.0151 (16)
C140.0383 (14)0.0318 (14)0.0376 (14)0.0005 (11)0.0106 (12)0.0050 (12)
C110.0416 (15)0.0364 (14)0.0301 (13)0.0045 (12)0.0075 (11)0.0013 (11)
C180.0451 (18)0.0396 (17)0.065 (2)0.0081 (15)0.0079 (16)0.0067 (16)
C120.0567 (19)0.0284 (13)0.0324 (15)0.0041 (13)0.0028 (14)0.0005 (11)
C150.0428 (16)0.0300 (14)0.0451 (17)0.0035 (12)0.0095 (13)0.0038 (12)
C160.053 (2)0.0401 (17)0.063 (2)0.0113 (15)0.0201 (17)0.0053 (16)
C170.0388 (17)0.052 (2)0.085 (3)0.0011 (15)0.0225 (17)0.0100 (19)
Geometric parameters (Å, º) top
O2—C11.268 (4)O4—C101.266 (4)
N1—C21.479 (4)N2—C111.472 (4)
N1—C31.501 (4)N2—C121.507 (4)
N1—H1A0.8600N2—H2C0.8600
C1—O11.217 (4)C10—O51.226 (4)
C1—C21.514 (4)C10—C111.512 (4)
C4—C91.369 (5)O6—C151.362 (4)
C4—C51.394 (4)O6—H6A0.8200
C4—C31.501 (4)C13—C181.370 (5)
O3—C61.362 (4)C13—C141.390 (4)
O3—H3C0.8200C13—C121.507 (4)
C9—C81.392 (6)O5—H5A0.8200
C9—H90.9300C14—C151.391 (4)
O1—H1B0.8200C14—H140.9300
C5—C61.387 (4)C11—H11A0.9700
C5—H50.9300C11—H11B0.9700
C3—H3A0.9700C18—C171.394 (6)
C3—H3B0.9700C18—H180.9300
C6—C71.380 (5)C12—H12A0.9700
C2—H2A0.9700C12—H12B0.9700
C2—H2B0.9700C15—C161.376 (5)
C7—C81.381 (6)C16—C171.373 (6)
C7—H70.9300C16—H160.9300
C8—H80.9300C17—H170.9300
C2—N1—C3113.6 (2)C11—N2—C12113.9 (2)
C2—N1—H1A123.2C11—N2—H2C123.1
C3—N1—H1A123.2C12—N2—H2C123.1
O1—C1—O2126.0 (3)O5—C10—O4126.3 (3)
O1—C1—C2119.0 (3)O5—C10—C11118.5 (3)
O2—C1—C2115.0 (3)O4—C10—C11115.2 (3)
C9—C4—C5119.8 (3)C15—O6—H6A109.5
C9—C4—C3121.8 (3)C18—C13—C14120.3 (3)
C5—C4—C3118.4 (3)C18—C13—C12121.3 (3)
C6—O3—H3C109.5C14—C13—C12118.4 (3)
C4—C9—C8120.6 (3)C10—O5—H5A109.5
C4—C9—H9119.7C15—C14—C13119.4 (3)
C8—C9—H9119.7C15—C14—H14120.3
C1—O1—H1B109.5C13—C14—H14120.3
C6—C5—C4119.6 (3)N2—C11—C10112.7 (2)
C6—C5—H5120.2N2—C11—H11A109.1
C4—C5—H5120.2C10—C11—H11A109.1
N1—C3—C4111.8 (2)N2—C11—H11B109.1
N1—C3—H3A109.3C10—C11—H11B109.1
C4—C3—H3A109.3H11A—C11—H11B107.8
N1—C3—H3B109.3C13—C18—C17120.0 (3)
C4—C3—H3B109.3C13—C18—H18120.0
H3A—C3—H3B107.9C17—C18—H18120.0
O3—C6—C7117.3 (3)N2—C12—C13111.0 (2)
O3—C6—C5122.2 (3)N2—C12—H12A109.4
C7—C6—C5120.5 (3)C13—C12—H12A109.4
N1—C2—C1111.8 (2)N2—C12—H12B109.4
N1—C2—H2A109.3C13—C12—H12B109.4
C1—C2—H2A109.3H12A—C12—H12B108.0
N1—C2—H2B109.3O6—C15—C16118.2 (3)
C1—C2—H2B109.3O6—C15—C14122.0 (3)
H2A—C2—H2B107.9C16—C15—C14119.8 (3)
C8—C7—C6119.7 (3)C17—C16—C15120.7 (3)
C8—C7—H7120.1C17—C16—H16119.6
C6—C7—H7120.1C15—C16—H16119.6
C7—C8—C9119.8 (3)C16—C17—C18119.7 (3)
C7—C8—H8120.1C16—C17—H17120.2
C9—C8—H8120.1C18—C17—H17120.2
C5—C4—C9—C81.0 (5)C18—C13—C14—C150.1 (5)
C3—C4—C9—C8179.8 (4)C12—C13—C14—C15177.2 (3)
C9—C4—C5—C60.1 (5)C12—N2—C11—C10163.2 (2)
C3—C4—C5—C6179.3 (3)O5—C10—C11—N214.3 (5)
C2—N1—C3—C455.5 (3)O4—C10—C11—N2167.2 (3)
C9—C4—C3—N1103.7 (4)C14—C13—C18—C170.1 (5)
C5—C4—C3—N175.5 (3)C12—C13—C18—C17177.1 (4)
C4—C5—C6—O3179.7 (3)C11—N2—C12—C1354.6 (3)
C4—C5—C6—C71.4 (5)C18—C13—C12—N2105.2 (3)
C3—N1—C2—C1165.6 (2)C14—C13—C12—N271.9 (4)
O1—C1—C2—N113.6 (5)C13—C14—C15—O6179.2 (3)
O2—C1—C2—N1167.4 (3)C13—C14—C15—C160.6 (5)
O3—C6—C7—C8179.0 (4)O6—C15—C16—C17179.7 (4)
C5—C6—C7—C82.0 (6)C14—C15—C16—C171.1 (6)
C6—C7—C8—C91.1 (7)C15—C16—C17—C181.0 (6)
C4—C9—C8—C70.4 (7)C13—C18—C17—C160.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.862.252.891 (3)132
O3—H3C···O2i0.821.842.639 (4)166
N2—H2C···O2ii0.862.282.910 (3)130
O6—H6A···O4iii0.821.852.646 (4)165
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11NO3
Mr181.19
Crystal system, space groupMonoclinic, Pc
Temperature (K)296
a, b, c (Å)11.9779 (3), 8.0267 (2), 9.3835 (2)
β (°) 101.391 (2)
V3)884.39 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7436, 1999, 1815
Rint0.022
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.134, 1.07
No. of reflections1999
No. of parameters235
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.862.252.891 (3)132
O3—H3C···O2i0.821.842.639 (4)166
N2—H2C···O2ii0.862.282.910 (3)130
O6—H6A···O4iii0.821.852.646 (4)165
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1; (iii) x, y, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the Doctoral Foundation of Henan Polytechnic University (B2009–65 648359 and B2009–70 648364).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA .  Google Scholar
First citationJia, L., Jiang, P., Xu, J., Hao, Z.-Y., Xu, X.-M., Chen, L.-H., Wu, J.-C., Tang, N., Wang, Q. & Vittal, J. J. (2010). Inorg. Chim. Acta, 363, 855–865.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds