Structure Reports

Online
ISSN 1600-5368

Poly[[diaquadi- μ_{2}-cyanido-bis (μ_{2}-pyra-zine-2-carboxylato)dicopper(I)copper(II)] dihydrate]

Guang Fan, ${ }^{\text {a, },{ }^{\mathrm{b}} * ~ J i a-j u a n ~ S u n, ~}{ }^{\text {a }}$ Min-yan Zheng, ${ }^{\text {a }}$ San-ping Chen ${ }^{\text {b }}$ and Sheng-Li Gao ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemistry \& Chemical Engineering, Xianyang Normal University, Xianyang 712000, Shaanxi, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry \& Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
Correspondence e-mail: fanguang2004@163.com
Received 14 April 2011; accepted 23 May 2011
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.029 ; w R$ factor $=0.095 ;$ data-to-parameter ratio $=11.1$.

In the title compound, $\left\{\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Cu}_{2}^{\mathrm{I}}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\right.$-$\left.2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the $\mathrm{Cu}^{\mathrm{II}}$ atom lies on an inversion centre and is octahedrally coordinated by two N atoms and two O atoms from opposing pyrazine-2-carboxylate (2-pac) ligands and two water O atoms. The Cu^{I} atom has a triangular geometry, coordinated by one N atom and one C atom from two bridging cyanide ligands, and another N atom from the 2-pac ligand. The three-dimensional structure features a succession of twodimensional sheets containing $[\mathrm{Cu}(\mathrm{CN})]_{n}$ chains linked by $\mathrm{Cu}(2-\mathrm{pac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ groups. The coordinated and free water molecules are involved in an extended three-dimensional hydrogen-bond network with the 2-pac ligands.

Related literature

For applications of metal-organic frameworks (MOFs), see: Klein et al. (1982); Li et al. (2004); Plater et al. (2001); Thomas (1978). For a related structure, see: Fan et al. (2006).

$a=13.8297$ (4) \AA
$b=9.4906$ (3) \AA
$c=7.1272$ (3) \AA
$\beta=100.768$ (3) ${ }^{\circ}$
$V=918.99(6) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=3.50 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.10 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.721, T_{\text {max }}=0.845$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.095$
$S=0.99$
1615 reflections
145 parameters
6 restraints

4141 measured reflections 1615 independent reflections 1269 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.36 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.978(2)$	$\mathrm{Cu} 2-\mathrm{C} 6$	$1.865(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.003(3)$	$\mathrm{Cu} 2-\mathrm{N} 3^{\mathrm{i}}$	$1.886(4)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$2.378(3)$	$\mathrm{Cu} 2-\mathrm{N} 2$	$2.163(3)$
Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$			

Symmetry code: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2$	$0.86(2)$	$2.08(3)$	$2.910(5)$	$160(7)$
$\mathrm{O}^{\text {(2i }}-\mathrm{H} 3 B \cdots \mathrm{O} 1^{\text {ii }}$	$0.82(2)$	$2.11(2)$	$2.883(3)$	$156(4)$
$\mathrm{O}^{\mathrm{Hii}} \mathrm{H} 3 A \cdots 2^{\text {ii }}$	$0.84(2)$	$1.94(2)$	$2.783(4)$	$172(4)$

Symmetry codes: (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

We gratefully acknowledge the Natural Science Foundation of Shaanxi Province (2009JQ2015, 2010JM2009), the Special Research Fund of the Education Department of Shaanxi Province (09 J K798, 2010 J K902) and the Open Fund of the Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education at Northwest University.

[^0]
Experimental

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$--
$M_{r}=560.91$
$2 \mathrm{H}_{2} \mathrm{O}$
Monoclinic, $P 2_{1} / c$
\qquad

metal-organic compounds

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, G., Chen, S. P. \& Gao, S. L. (2006). J. Coord. Chem. 7, 791-795.
Klein, C. L., Majeste, R. J., Trefonas, L. M. \& O’Connor, C. J. (1982). Inorg. Chem. 21, 1891-1897.

Li, X. J., Cao, R., Sun, D. F., Bi, W. H., Wang, Y. Q., Li, X. \& Hong, M. C. (2004). Cryst. Growth Des. 4, 775-780.

Plater, M. J., Foreman, M. R., Howie, R. A., Skakle, J. M., SMcWilliam, S. A., Coronado, E. G. \& Gomez-Garcia, C. J. (2001). Polyhedron, 20, 2293-2303.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thomas, J. M. (1978). Acc. Chem. Res. 11, 94-100.

supporting information

Acta Cryst. (2011). E67, m822-m823 [doi:10.1107/S1600536811019453]

Poly[[diaquadi- μ_{2}-cyanido-bis(μ_{2}-pyrazine-2-carboxylato)dicopper(I)copper(II)] dihydrate]

Guang Fan, Jia-juan Sun, Min-yan Zheng, San-ping Chen and Sheng-Li Gao

S1. Comment

Single crystal diffraction has revealed that complex (I) crystallizes in the monoclinic space group $P 2{ }_{1} / c$ featuring twodimensional networks through chain-like $[\mathrm{Cu}(\mathrm{CN})]_{\mathrm{n}}$ units linked by $\mathrm{Cu}(2-\mathrm{pac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. As shown in Fig. 1, there are two crystallographic inequivalent copper atoms. $\mathrm{The} \mathrm{Cu}(1)$ atom is divalent and $\mathrm{Cu}(2)$ is monovalent. $\mathrm{Cu}(1)$ adopts a distorted octahedral geometry by two N and two O atoms from the 2-pac ligands in the equatorial plane whereas the axial positions are occupied by two water molecules with 1.9781 (17) \AA for $\mathrm{Cu}-\mathrm{O} 1 ; 2.002$ (2) \AA for $\mathrm{Cu} 1 — \mathrm{~N} 1 ; 2.371$ (2) \AA for $\mathrm{Cu}-\mathrm{O} 3$. Each $\mathrm{Cu}(2)$ atom has a triangular geometry, coordinated to one N atom and one C atom from two bridging cyanide ligands and another N atom from $\mathrm{Cu}(2-\mathrm{pac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, with $1.860(3) \AA$ for $\mathrm{Cu} 2-\mathrm{C} 6 ; 1.885(3) \AA$ for $\mathrm{Cu} 2-\mathrm{N} 3$; 2.163 (2) \AA for $\mathrm{Cu} 2 — \mathrm{~N} 2$.

Fig. 2 shows the independent cyanide ligands bridging $\mathrm{Cu}(2)$ to form a zigzag chain of $[\mathrm{Cu}(\mathrm{CN})]_{n}$ units. Such chains are interconnected through two $\mathrm{Cu}(2-\mathrm{pac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~N}$ donor ligands giving rise to a two-dimensional sheet network.
Furthermore, an extensive hydrogen bonding network is formed, which involves the coordinated, free water molecules and the 2-pac ligand substituents, affording a three-dimensional network, as shown in Fig. 3. It is noted that one proton of the free water molecule has no apparent hydrogen acceptor atom.
The present structure is quite different from the mixed-valence copper complex $\left[\mathrm{Cu}^{\mathrm{II}} \mathrm{Cu}^{\mathrm{I}}(2-\mathrm{pac})_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$ reported by Fan et al. (2006). In the latter structure the coordination number of monovalent Cu atom is 4 , but for the present structure the coordination number is 3 .

S2. Experimental

Red crystals from complex (I) were obtained by hydrothermal synthesis of a mixture of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}(0.1241 \mathrm{~g}, 0.5$ $\mathrm{mmol}), 0.4 \mathrm{ml} \mathrm{H}_{3} \mathrm{PO}_{3}$ and 2-pac ($0.0673 \mathrm{~g}, 0.5 \mathrm{mmol}$) in $6 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, sealed in a Teflon-lined stainless container, heated at 363 K for 24 h and slowly cooled to room temperature.

S3. Refinement

All H atoms attached to C atoms from the organic ligands were generated in idealized positions and constrained to ride on their parent atoms, with $\mathrm{d}(\mathrm{C}-\mathrm{H})=0.93 \AA, U_{\mathrm{iso}}=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The water H -atoms were located in a different Fourier map, and the geometry of the two water molecules was restrained to its ideal geometry by in total six restraints on angles and bond distances.

Figure 1

A view of the molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Symmetry code for $\mathrm{A}: 1-x,-\mathrm{y},-z ; \mathrm{B}:-x$, $-0.5+y, 0.5-z$.

Figure 2
Two-dimensional sheet structure for complex (I). Hydrogen atoms have been omitted for clarity.

Figure 3
Three-dimensional stacking diagram for complex (I) along the c axis.

Poly[[diaquadi- μ_{2}-cyanido-bis(μ_{2}-pyrazine-2-carboxylato)dicopper(I)copper(II)] dihydrate]

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}(\mathrm{CN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=560.91$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.8297$ (4) \AA
$b=9.4906$ (3) \AA
$c=7.1272$ (3) \AA
$\beta=100.768(3)^{\circ}$
$V=918.99(6) \AA^{3}$
$Z=2$

Data collection

Bruker SMART APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.721, T_{\text {max }}=0.845$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.095$
$S=0.99$
1615 reflections
$F(000)=558$
$D_{\mathrm{x}}=2.027 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 117 reflections
$\theta=2.5-19.1^{\circ}$
$\mu=3.50 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, red
$0.10 \times 0.08 \times 0.05 \mathrm{~mm}$

4141 measured reflections
1615 independent reflections
1269 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-16 \rightarrow 16$
$k=-11 \rightarrow 11$
$l=-7 \rightarrow 8$

145 parameters
6 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0484 P)^{2}+1.5206 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }<0.001\)
\(\Delta \rho_{\text {max }}=0.36\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Cu1	0.5000	0.0000	0.0000	$0.0296(2)$
Cu 2	$0.03571(3)$	$0.00934(4)$	$0.21527(8)$	$0.0366(2)$
O1	$0.45839(17)$	$0.1989(2)$	$-0.0394(4)$	$0.0316(6)$
O2	$0.33417(17)$	$0.3429(2)$	$-0.0167(4)$	$0.0356(6)$
O3	$0.5540(2)$	$0.0613(3)$	$0.3263(4)$	$0.0433(7)$
H3A	$0.588(3)$	$-0.001(4)$	$0.393(6)$	0.065^{*}
H3B	$0.524(3)$	$0.113(4)$	$0.390(6)$	0.065^{*}
C5	$0.3724(2)$	$0.2253(3)$	$-0.0104(5)$	$0.0258(7)$
N1	$0.3627(2)$	$-0.0237(3)$	$0.0479(5)$	$0.0297(7)$
N2	$0.1722(2)$	$-0.0069(3)$	$0.1101(5)$	$0.0330(7)$
N3	$-0.0012(2)$	$0.3197(4)$	$0.2534(5)$	$0.0422(8)$
C1	$0.3146(2)$	$0.0996(3)$	$0.0357(5)$	$0.0253(7)$
C4	$0.3148(3)$	$-0.1381(4)$	$0.0874(6)$	$0.0401(10)$
H4	0.3458	-0.2254	0.0941	0.048^{*}
C2	$0.2195(2)$	$0.1067(3)$	$0.0676(5)$	$0.0293(8)$
H2	0.1877	0.1935	0.0591	0.035^{*}
C6	$0.0122(2)$	$0.2013(3)$	$0.2401(5)$	$0.0288(8)$
C3	$0.2199(3)$	$-0.1284(4)$	$0.1185(6)$	$0.0405(10)$
H3	0.1881	-0.2100	0.1463	0.049^{*}
O4	$0.1922(3)$	$0.5271(4)$	$0.1144(8)$	$0.0884(13)$
H4A	$0.229(4)$	$0.457(5)$	$0.093(11)$	0.133^{*}
H4B	$0.133(2)$	$0.495(7)$	$0.108(13)$	0.133^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0222(3)$	$0.0210(3)$	$0.0499(4)$	$0.0014(2)$	$0.0178(3)$	$0.0025(2)$
Cu 2	$0.0345(3)$	$0.0214(3)$	$0.0572(4)$	$-0.00078(17)$	$0.0176(2)$	$-0.0008(2)$
O1	$0.0256(12)$	$0.0243(12)$	$0.0487(16)$	$-0.0007(10)$	$0.0170(11)$	$0.0041(11)$
O2	$0.0297(12)$	$0.0217(13)$	$0.0564(18)$	$0.0009(10)$	$0.0109(12)$	$0.0014(11)$
O3	$0.0502(17)$	$0.0366(16)$	$0.0452(18)$	$0.0128(13)$	$0.0138(14)$	$-0.0037(13)$

C5	$0.0267(17)$	$0.0226(17)$	$0.029(2)$	$-0.0009(13)$	$0.0070(15)$	$-0.0010(14)$
N1	$0.0240(14)$	$0.0234(15)$	$0.0449(19)$	$0.0010(12)$	$0.0147(14)$	$0.0007(13)$
N2	$0.0267(15)$	$0.0260(16)$	$0.050(2)$	$-0.0008(11)$	$0.0173(15)$	$0.0018(13)$
N3	$0.0386(17)$	$0.042(2)$	$0.050(2)$	$0.0022(15)$	$0.0172(16)$	$0.0012(16)$
C1	$0.0251(16)$	$0.0212(17)$	$0.031(2)$	$0.0003(13)$	$0.0079(14)$	$-0.0012(14)$
C4	$0.036(2)$	$0.0215(18)$	$0.068(3)$	$0.0060(15)$	$0.023(2)$	$0.0058(18)$
C2	$0.0248(17)$	$0.0225(18)$	$0.042(2)$	$-0.0004(14)$	$0.0106(16)$	$-0.0012(15)$
C6	$0.0322(18)$	$0.0183(17)$	$0.039(2)$	$0.0033(14)$	$0.0139(16)$	$-0.0011(15)$
C3	$0.0326(19)$	$0.0267(19)$	$0.068(3)$	$-0.0008(16)$	$0.0245(19)$	$0.0055(19)$
O4	$0.082(3)$	$0.077(3)$	$0.115(4)$	$0.013(2)$	$0.043(3)$	$-0.001(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Ol}^{1}$	1.978 (2)	C5-C1	1.507 (4)
$\mathrm{Cu}-\mathrm{O} 1$	1.978 (2)	N1-C4	1.329 (4)
$\mathrm{Cu} 1-\mathrm{N} 1^{1}$	2.003 (3)	N1-C1	1.340 (4)
$\mathrm{Cu}-\mathrm{N} 1$	2.003 (3)	N2-C3	1.324 (5)
$\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	2.378 (3)	N2-C2	1.326 (4)
$\mathrm{Cu} 1-\mathrm{O} 3$	2.378 (3)	N3-C6	1.146 (5)
$\mathrm{Cu} 2-\mathrm{C} 6$	1.865 (3)	N3-Cu2 ${ }^{\text {iv }}$	1.886 (4)
$\mathrm{Cu} 2-\mathrm{N} 3{ }^{\text {ii }}$	1.886 (4)	$\mathrm{C} 1-\mathrm{C} 2$	1.377 (5)
$\mathrm{Cu} 2-\mathrm{N} 2$	2.163 (3)	$\mathrm{C} 4-\mathrm{C} 3$	1.375 (5)
$\mathrm{Cu} 2-\mathrm{Cu} 2{ }^{\text {iii }}$	3.0481 (11)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
O1-C5	1.269 (4)	C2-H2	0.9300
O2-C5	1.232 (4)	C3-H3	0.9300
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	0.844 (19)	O4-H4A	0.86 (2)
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	0.824 (19)	O4-H4B	0.87 (2)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	180.00 (14)	O2-C5-O1	125.6 (3)
$\mathrm{O} 1-\mathrm{Cul}-\mathrm{N} 1^{\mathrm{i}}$	82.62 (10)	O2-C5-C1	118.9 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	97.38 (10)	O1-C5-C1	115.5 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	97.38 (10)	C4-N1-C1	117.8 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	82.62 (10)	C4-N1-Cu1	130.8 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1$	180.00 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	111.5 (2)
$\mathrm{O1}-\mathrm{Cul}-\mathrm{O}^{\text {i }}$	86.28 (10)	C3-N2-C2	117.1 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	93.72 (10)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Cu} 2$	120.4 (2)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O}^{\text {i }}$	89.72 (11)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cu} 2$	121.4 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {i }}$	90.28 (11)	$\mathrm{C} 6-\mathrm{N} 3-\mathrm{Cu} 2{ }^{\text {iv }}$	173.8 (3)
O1-Cu1-O3	93.72 (10)	N1-C1-C2	120.7 (3)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	86.28 (10)	N1-C1-C5	115.4 (3)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 3$	90.28 (11)	C2-C1-C5	124.0 (3)
N1-Cu1-O3	89.72 (11)	N1-C4-C3	120.6 (3)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 3$	180.00 (14)	N1-C4-H4	119.7
$\mathrm{C} 6-\mathrm{Cu} 2-\mathrm{N} 3{ }^{\text {ii }}$	150.28 (16)	C3-C4-H4	119.7
$\mathrm{C} 6-\mathrm{Cu} 2-\mathrm{N} 2$	106.34 (13)	N2-C2-C1	121.7 (3)
$\mathrm{N} 3 \mathrm{ii}-\mathrm{Cu} 2-\mathrm{N} 2$	103.29 (12)	N2-C2-H2	119.2
$\mathrm{C} 6-\mathrm{Cu} 2-\mathrm{Cu}{ }^{\text {iii }}$	97.07 (12)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.2
$\mathrm{N} 3 i-\mathrm{Cu} 2-\mathrm{Cu} 2{ }^{\text {iii }}$	91.27 (11)	N3-C6-Cu2	178.9 (4)

$\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{Cu} 2^{\mathrm{iii}}$	$77.67(9)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$122.2(3)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{Cu} 1$	$114.9(2)$	$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3$	118.9
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$115(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.9
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$126(3)$	$\mathrm{H} 4 \mathrm{~A}-\mathrm{O} 4-\mathrm{H} 4 \mathrm{~B}$	$107(4)$
$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$113(3)$		

Symmetry codes: (i) $-x+1,-y,-z$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $-x,-y,-z$; (iv) $-x, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 2$	$0.86(2)$	$2.08(3)$	$2.910(5)$	$160(7)$
$\mathrm{O} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 1^{\mathrm{v}}$	$0.82(2)$	$2.11(2)$	$2.883(3)$	$156(4)$
$\mathrm{O}^{\mathrm{V}}-\mathrm{H} 3 A \cdots \mathrm{O} 2^{\text {vi }}$	$0.84(2)$	$1.94(2)$	$2.783(4)$	$172(4)$

Symmetry codes: (v) $x,-y+1 / 2, z+1 / 2$; (vi) $-x+1, y-1 / 2,-z+1 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2007).

