

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1-methylpiperazine-1,4-diium) tetrabromidocuprate(II)

Cong-hu Peng

Department of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China Correspondence e-mail: ayitpch@yahoo.com.cn

Received 14 June 2011; accepted 20 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.044; wR factor = 0.088; data-to-parameter ratio = 28.4.

The title compound, $(C_5H_{14}N_2)[CuBr_4]$, was synthesized by hydrothermal reaction of CuBr₂ with 1-methylpiperazine in an HBr/water solution. Both amine N atoms are protonated. The Cu-Br distances in the tetrahedral anion are in the range 2.3809 (11)–2.4131 (11) Å. In the crystal, moderately strong and weak intermolecular N-H···Br hydrogen bonds link the anion and cation units into an infinite two-dimensional network parallel to the *ab* plane.

Related literature

For related amino coordination compounds, see: Fu *et al.* (2009); Aminabhavi *et al.* (1986); Dai & Fu (2008*a*,*b*). For halogen atoms as hydrogen-bond acceptors, see: Brammer *et al.* (2001). For the chlorine analogue of the title compound, see: Peng (2011).

Experimental

Crystal data

$(C_5H_{14}N_2)[CuBr_4]$	b = 10.341 (2) Å
$M_r = 485.36$	c = 14.255 (3) Å
Orthorhombic, $P_{2_1}2_{1_2}2_{1_2}$	V = 1355.2 (5) Å ³
a = 9.1933 (18) Å	Z = 4

Mo $K\alpha$ radiation $\mu = 13.37 \text{ mm}^{-1}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{\rm min} = 0.89, T_{\rm max} = 1.00$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.088$ S = 1.08 3092 reflections 109 parametersH-atom parameters constrained T = 298 K $0.20 \times 0.05 \times 0.05 \text{ mm}$

14009 measured reflections 3092 independent reflections 2545 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.079$

 $\begin{array}{l} \Delta \rho_{max} = 0.92 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.71 \ e \ \mathring{A}^{-3} \\ Absolute structure: Flack (1983), \\ 1312 \ Friedel pairs \\ Flack parameter: 0.05 (2) \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2C \cdot \cdot \cdot Br3^{i}$	0.90	2.50	3.339 (6)	154
$N2-H2D\cdots Br1^{ii}$	0.90	2.68	3.354 (5)	133
$N2-H2D\cdots Br2^{ii}$	0.90	2.76	3.457 (5)	135
$N1 - H1 \cdots Br4$	0.90	2.55	3.345 (5)	148

Symmetry codes: (i) x, y + 1, z; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the start-up fund of Anyang Institute of Technology, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2014).

References

- Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.
- Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.
- Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.
- Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.
- Peng, C. (2011). Acta Cryst. E67, m979.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m967 [doi:10.1107/S1600536811024184]

Bis(1-methylpiperazine-1,4-diium) tetrabromidocuprate(II)

Cong-hu Peng

S1. Comment

Amino derivatives of piperazine have found a wide range of applications in material science, due to their magnetic, fluorescent and dielectric properties. There has also been an increased interest in the preparation of amino coordination compounds (Aminabhavi *et al.* 1986; Dai & Fu 2008*a*; Dai & Fu 2008*b*; Fu, *et al.* 2009). We report here the crystal structure of the title compound, *bis*-(1-methylpiperazine-1,4-diium) tetrabromide copper(II).

The asymmetric unit is composed of one $CuBr_{4^{2-}}$ anion and one 1-methylpiperazine-1,4-diium cation (Fig.1). Both amine N atoms are protonated, indicating thus two positive charges on the cation that balance the two negative charges on the CuBr₄²⁻ anion. Geometric parameters of the title compound are in the normal range.

In the crystal structure, all H atoms of the amine groups are involved in intermolecular N—H···Br hydrogen bonds with the bond angles ranging from 132.7° to 154.3° and N···Br distances from 3.339 (6)Å to 3.457 (5)Å, respectively. Following the survey by Brammer *et al.* (2001) the N2—H2D···Br1 and N2—H2D···Br2 H-bonds should be considered to be clearly weaker than the N2—H2C···Br3 and N1—H1···Br4 interactions (Table 1). The hydrogen bonds link the cations and anions into an infinite two-dimensional network parallel to the *ab*-plane (Fig.2). The chlorine analogue of the title compound is reported elsewhere in this issue (Peng, 2011).

S2. Experimental

A mixture of 1-methylpiperazine (0.4 mmol), CuBr₂ (0.4 mmol) and HBr/distilled water (10ml,1:4) sealed in a teflonlined stainless steel vessel, was maintained at 100 °C. Blue block -shaped crystals suitable for X-ray analysis were obtained after 3 days.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding on the parent atoms with C-H = 0.97 Å (methylene) and C-H = 0.96 Å (methyl) with $U_{iso}(H) = 1.2U_{eq}$ (methylene) and $U_{iso}(H) = 1.5U_{eq}$ (methyl). The positional parameters of the H atoms (N1, N2) were initially refined freely, subsequently restrained using a distance of 0.90 Å and in the final refinements treated in riding motion on their parent nitrogen atoms with $U_{iso}(H)=1.2U_{eq}(N)$.

Figure 1

Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound viewed along the c axis showing the two-dimensional hydrogen bond network (dashed lines). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Bis(1-methylpiperazine-1,4-diium) tetrabromidocuprate(II)

Crystal data

 $(C_5H_{14}N_2)[CuBr_4]$ $M_r = 485.36$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 9.1933 (18) Å b = 10.341 (2) Å c = 14.255 (3) Å V = 1355.2 (5) Å³ Z = 4

Data collection

Rigaku Mercury2	14009 measured reflections
diffractometer	3092 independent reflections
Radiation source: fine-focus sealed tube	2545 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.079$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
profile data from φ scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(CrystalClear; Rigaku, 2005)	$l = -18 \rightarrow 18$
$T_{\min} = 0.89, \ T_{\max} = 1.00$	

F(000) = 908

 $\theta = 3.3 - 27.5^{\circ}$ $\mu = 13.37 \text{ mm}^{-1}$

T = 298 K

Block, blue

 $D_{\rm x} = 2.379 {\rm Mg} {\rm m}^{-3}$

 $0.20 \times 0.05 \times 0.05$ mm

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3092 reflections

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_o^2) + (0.0277P)^2]$
<i>S</i> = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
3092 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
109 parameters	$\Delta ho_{ m max} = 0.92 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1312 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.05 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.99472 (8)	0.08523 (7)	0.59527 (5)	0.0496 (2)	
Br2	0.89670 (8)	-0.22010 (7)	0.49622 (5)	0.0430 (2)	
Br3	0.72439 (8)	-0.21019 (7)	0.72661 (5)	0.04138 (19)	

Cu1	0.79551 (9)	-0.06642 (7)	0.60209 (5)	0.0365 (2)
Br4	0.60073 (8)	0.08567 (7)	0.61127 (6)	0.0501 (2)
N2	0.6726 (5)	0.5289 (5)	0.5927 (4)	0.0367 (14)
H2C	0.7150	0.5985	0.6190	0.044*
H2D	0.6225	0.5519	0.5411	0.044*
N1	0.7844 (6)	0.3272 (4)	0.7129 (3)	0.0298 (12)
H1	0.7703	0.2609	0.6731	0.036*
C4	0.8043 (7)	0.4533 (7)	0.5656 (5)	0.0384 (16)
H4A	0.8684	0.5069	0.5281	0.046*
H4B	0.7756	0.3793	0.5281	0.046*
C5	0.8841 (7)	0.4074 (6)	0.6529 (5)	0.0364 (16)
H5A	0.9680	0.3564	0.6348	0.044*
H5B	0.9181	0.4815	0.6884	0.044*
C2	0.6566 (7)	0.4061 (7)	0.7413 (4)	0.0413 (17)
H2A	0.6892	0.4790	0.7786	0.050*
H2B	0.5922	0.3541	0.7798	0.050*
C3	0.5744 (7)	0.4550 (7)	0.6565 (5)	0.0397 (17)
H3A	0.5329	0.3824	0.6228	0.048*
H3B	0.4953	0.5104	0.6769	0.048*
C1	0.8613 (8)	0.2694 (7)	0.7956 (5)	0.050 (2)
H1A	0.7941	0.2181	0.8312	0.075*
H1B	0.8992	0.3374	0.8344	0.075*
H1C	0.9398	0.2159	0.7741	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0533 (5)	0.0344 (4)	0.0610 (5)	-0.0140 (4)	0.0190 (4)	-0.0117 (4)
Br2	0.0539 (4)	0.0333 (4)	0.0418 (4)	-0.0101 (4)	0.0066 (3)	-0.0080(3)
Br3	0.0424 (4)	0.0365 (4)	0.0452 (4)	0.0005 (3)	0.0098 (3)	0.0034 (3)
Cu1	0.0389 (5)	0.0269 (4)	0.0436 (5)	-0.0011 (4)	0.0015 (4)	-0.0011 (4)
Br4	0.0374 (4)	0.0322 (4)	0.0805 (5)	0.0010 (3)	-0.0113 (4)	-0.0026 (4)
N2	0.033 (3)	0.035 (3)	0.041 (3)	0.002 (3)	-0.003 (3)	-0.001 (3)
N1	0.032 (3)	0.024 (3)	0.033 (3)	0.000 (2)	0.000 (2)	-0.002 (2)
C4	0.043 (4)	0.033 (4)	0.040 (4)	0.008 (3)	0.010 (3)	0.002 (3)
C5	0.026 (4)	0.027 (4)	0.057 (4)	0.006 (3)	0.003 (3)	-0.003 (3)
C2	0.038 (4)	0.046 (4)	0.040 (4)	0.009 (3)	0.011 (3)	0.003 (4)
C3	0.025 (4)	0.047 (4)	0.047 (4)	0.004 (3)	0.005 (3)	0.009 (4)
C1	0.053 (5)	0.048 (4)	0.049 (4)	0.015 (4)	-0.007 (3)	0.007 (4)

Geometric parameters (Å, °)

Br1—Cu1	2.4131 (11)	C4—H4A	0.9700	
Br2—Cu1	2.3809 (11)	C4—H4B	0.9700	
Br3—Cu1	2.4059 (10)	C5—H5A	0.9700	
Cu1—Br4	2.3869 (11)	С5—Н5В	0.9700	
N2—C3	1.492 (8)	C2—C3	1.513 (9)	
N2—C4	1.493 (7)	C2—H2A	0.9700	

supporting information

N2—H2C N2—H2D N1—C2 N1—C1 N1—C5 N1—H1 C4—C5	0.9000 0.9000 1.486 (8) 1.499 (8) 1.503 (8) 0.9000 1.520 (9)	C2—H2B C3—H3A C3—H3B C1—H1A C1—H1B C1—H1C	0.9700 0.9700 0.9700 0.9600 0.9600 0.9600
Br2-Cu1-Br4Br2-Cu1-Br3Br4-Cu1-Br3Br4-Cu1-Br1Br4-Cu1-Br1Br3-Cu1-Br1Br3-Cu1-Br1C3-N2-C4C3-N2-H2CC4-N2-H2CC4-N2-H2DH2C-N2-H2DH2C-N2-H2DC2-N1-C1C2-N1-C5C1-N1-C5C2-N1-H1C1-N1-H1N2-C4-C5N2-C4-H4AC5-C4-H4A	140.15 (4) 99.28 (4) 99.38 (4) 96.41 (4) 98.24 (4) 129.61 (4) 112.3 (5) 114.7 100.1 109.0 109.9 110.6 112.2 (5) 109.5 (5) 112.3 (5) 118.5 105.1 98.6 110.1 (5) 109.7	$\begin{array}{l} N1-C5-C4\\ N1-C5-H5A\\ C4-C5-H5A\\ N1-C5-H5B\\ C4-C5-H5B\\ H5A-C5-H5B\\ N1-C2-C3\\ N1-C2-H2A\\ C3-C2-H2A\\ C3-C2-H2B\\ C3-C2-H2B\\ H2A-C2-H2B\\ H2A-C2-H2B\\ N2-C3-C2\\ N2-C3-H3A\\ C2-C3-H3A\\ C2-C3-H3B\\ H3A-C3-H3B\\ N1-C1-H1B\\ H1A-C1-H1B\\ H1A-C1-H1B\\ \end{array}$	110.1 (5) 109.6 109.6 109.6 108.2 111.1 (5) 109.4 109.4 109.4 109.4 109.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
N2—C4—H4B C5—C4—H4B H4A—C4—H4B	109.7 109.7 108.2	N1—C1—H1C H1A—C1—H1C H1B—C1—H1C	109.5 109.5 109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2C···Br3 ⁱ	0.90	2.50	3.339 (6)	154
N2—H2D····Br1 ⁱⁱ	0.90	2.68	3.354 (5)	133
N2—H2D···Br2 ⁱⁱ	0.90	2.76	3.457 (5)	135
N1—H1…Br4	0.90	2.55	3.345 (5)	148

Symmetry codes: (i) x, y+1, z; (ii) x-1/2, -y+1/2, -z+1.