Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(3-methylphenyl)succinamide dihydrate

B. S. Saraswathi, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 23 May 2011; accepted 31 May 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; disorder in main residue; R factor $=0.126$; $w R$ factor $=0.159$; data-to-parameter ratio $=13.7$.

The asymmetric unit of the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$.$2 \mathrm{H}_{2} \mathrm{O}$, contains half a molecule with a center of symmetry at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond. The $\mathrm{N}-\mathrm{H}$ bonds in the amide fragments are anti to the meta-methyl groups in the adjacent benzene rings. The dihedral angle between the benzene ring and the $\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}$ segment in the two halves of the molecule is $5.6(4)^{\circ}$. In the crystal, the packing of molecules through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions leads to the formation of layers parallel to the $b c$ plane. The methyl group is disordered with respect to the 3 - and 5-positions of the benzene ring, with site-occupation factors of 0.910 (8) and 0.090 (8).

Related literature

For the study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000); Saraswathi et al. (2011a,b). For the effect of substituents on the structures of N-(aryl)methanesulfonamides, see: Gowda et al. (2007). For similar structures, see: Pierrot et al. (1984).

Experimental

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$V=905.5(5) \AA^{3}$
$M_{r}=332.39$
Monoclinic, $P 2_{1} / c$
$Z=2$
$a=13.401$ (4) A
$b=4.937$ (2) A
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$c=14.446$ (4) \AA
$T=293 \mathrm{~K}$
$0.48 \times 0.12 \times 0.04 \mathrm{~mm}$
$\beta=108.67$ (3) ${ }^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.126$
$w R\left(F^{2}\right)=0.159$
$S=1.23$
1679 reflections
123 parameters

Diffraction, 2009)
$T_{\min }=0.960, T_{\max }=0.997$ 2857 measured reflections 1679 independent reflections 797 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.064$

10 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.23 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.10	$2.946(6)$	169
$\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82	2.08	$2.836(4)$	153
$\mathrm{O} 2-\mathrm{H} 22 \cdots \mathrm{O} 1$	0.84	1.87	$2.713(5)$	178

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2494).

References

Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2570.
Gowda, B. T., Paulus, H. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779 790.

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Pierrot, M., Baldy, A., Maire, J. C., Mehrotra, R. C., Kapoor, T. S. \& Bachlas, B. P. (1984). Acta Cryst. C40, 1931-1934.

Saraswathi, B. S., Foro, S. \& Gowda, B. T. (2011a). Acta Cryst. E67, 0607.
Saraswathi, B. S., Foro, S. \& Gowda, B. T. (2011b). Acta Cryst. E67, 0966.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2011). E67, o1591 [doi:10.1107/S1600536811020940]

N, \mathbf{N}^{\prime}-Bis(3-methylphenyl)succinamide dihydrate

B. S. Saraswathi, Sabine Foro and B. Thimme Gowda

S1. Comment

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of studying the substituent effects on the structures of this class of compounds (Gowda et al., 2000, 2007; Saraswathi et al., $2011 a, b$), in the present work, the structure of N, N-bis(3-methylphenyl)-succinamide dihydrate, (I), has been determined (Fig.1). The asymmetric unit of (I) contains half a molecule with a center of symmetry at the mid-point of the central CC bond, similar to that observed in bis(2-chlorophenylaminocarbonylmethyl)disulfide, (II), (Pierrot et al., 1984), N, N-bis-(2-methylphenyl)- succinamide, (III), (Saraswathi et al., 2011a) N, N - bis(3-chlorophenyl)-succinamide (IV) (Saraswathi et al., 2011b).
In the $\mathrm{C}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{C}$ segment, the amide O atom is anti to the H atoms attached to the adjacent C atom. $\mathrm{The} \mathrm{N}-\mathrm{H}$ bonds in the amide fragments are also anti to the meta-methyl groups in the adjacent benzene rings, similar to that observed with respect to the ortho-methyl groups in (III) and the meta-chloro groups in (IV).
The dihedral angle between the benzene ring and the $\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}$ segment in the two halves of the molecule is $5.6(4)^{\circ}$, compared to the values of $62.1(2)^{\circ}$ in (III) and $32.8(1)^{\circ}$ in (IV). The striking difference may be due to the fact that the title compound is the dihydrate, i.e. is composed of the amide and lattice water molecules, which, unlike in other compounds, influence the molecular conformation through hydrogen bonding interactions.

The torsion angles of $\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{a}$ and $\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{a}$ in (I) are $175.9(6)^{\circ}$ and $-5.3(9)^{\circ}$, compared to the values of $150.9(3)^{\circ}$ and $-30.5(4)^{\circ}$ in (III) and $-175.4(2)^{\circ}$ and $5.9(4)^{\circ}$ in (IV). The differences in the torsion angles may be due to the steric hindrances caused by the different substituents.
Similarly, the torsion angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ are $5.4(9)^{\circ}$ and $-173.6(6)^{\circ}$, compared to the values of -64.0 (4) ${ }^{\circ}$ and $117.6(3)^{\circ}$ in (III) and $-35.0(3)^{\circ}$ and $147.5(2)^{\circ}$ in (IV).
The crystal packing of (I), through $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 2, \mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 2$ and $\mathrm{O} 2-\mathrm{H} 22 \cdots \mathrm{O} 1$ hydrogen bonding (Table 1), leads to the formation of layers parallel to the $b c$ plane and is shown in Fig. 2.

S2. Experimental

Succinic anhydride (0.01 mol) in toluene (25 ml) was treated dropwise with m-toluidine $(0.01 \mathrm{~mol})$ also in toluene (20 $\mathrm{ml})$ with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted m-toluidine. The resultant N-(3-methylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to a constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra.
The N-(3-methylphenyl)succinamic acid obtained was then treated with phosphorous oxychloride and excess of m toluidine at room temperature with constant stirring. The resultant mixture was stirred for 4 h , kept aside for additional 6
h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, N, N-bis(3-methylphenyl)-succinamide dihydrate, was filtered under sucction, washed thoroughly with water, dilute sodium hydroxide solution and finally with water. It was recrystallized to a constant melting point from a mixture of acetone and chloroform. The purity of the compound was checked by elemental analysis, and characterized by its infrared and NMR spectra.
Needle-like colorless single crystals used in the X-ray diffraction studies were grown in a mixture of acetone and chloroform at room temperature.

S3. Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance $\mathrm{N}-\mathrm{H}=0.86$ (2) \AA. The stucture was modelled with stoichiometric chemical composition applying an approximation of full occupancy of H5 and no corresponding partly occupied hydrogen atom at C3. The C9'H3 group in an alternative orientation was idealized and refined using a AFIX 3 (positional optimization of the entire group only by translation, no rotations) in SHELXL. The U^{ij} components of C9' were assumed to be identical with that of C5 (EADP C5 C9') and were restrained to approximate isotropic behaviour. Atom C9 was refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity $[0.910(8)$ and $0.090(8)]$. A DELU restraint was used for all U^{ij}. The water molecule was refined as a rigid group with respect to x, y, z and its orientation (AFIX 6). The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, the methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and the methylene $\mathrm{C}-\mathrm{H}=$ $0.97 \AA . U_{\text {iso }}(\mathrm{H})$ values of the methyl group and the water molecule were set at $1.5 U_{\text {eq }}$ of the parent atom. The other H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).
The crystals available for X-ray studies were of rather poor quality and weak scatterers at high theta value resulting in relatively high R values.

Figure 1

Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level. The disordered methyl group at the 3 and 5 positions of the phenyl ring is shown with both orientations.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N, N^{\prime}-Bis(3-methylphenyl)butane-1,4-diamide dihydrate

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=332.39$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.401$ (4) \AA
$b=4.937$ (2) \AA
$c=14.446$ (4) \AA
$\beta=108.67$ (3) ${ }^{\circ}$
$V=905.5(5) \AA^{3}$
$Z=2$
$F(000)=356$
$D_{\mathrm{x}}=1.219 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 433 reflections
$\theta=2.9-28.2^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle, colourless
$0.48 \times 0.12 \times 0.04 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.960, T_{\text {max }}=0.997$

> 2857 measured reflections
> 1679 independent reflections
> 797 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.064$
> $\theta_{\max }=25.7^{\circ}, \theta_{\min }=2.9^{\circ}$
> $h=-10 \rightarrow 16$
> $k=-6 \rightarrow 4$
> $l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.126$
$w R\left(F^{2}\right)=0.159$
$S=1.23$
1679 reflections
123 parameters
10 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. (<1)
O1	$0.1286(3)$	$0.1598(8)$	$0.4781(2)$	$0.0590(12)$	
N1	$0.1521(3)$	$0.1149(9)$	$0.6385(3)$	$0.0471(13)$	
H1N	0.1313	0.1791	0.6846	0.056^{*}	
C1	$0.2292(4)$	$-0.0896(12)$	$0.6675(4)$	$0.0467(15)$	
C2	$0.2784(4)$	$-0.2019(13)$	$0.6062(4)$	$0.0582(17)$	
H2	0.2614	-0.1412	0.5421	0.070^{*}	$0.0668(19)$
C3	$0.3535(5)$	$-0.4063(13)$	$0.6396(6)$	$0.076(2)$	
C4	$0.3776(5)$	$-0.4944(14)$	$0.7340(6)$	0.091^{*}	
H4	0.4281	-0.6288	0.7572	$0.081(2)$	
C5	$0.3280(5)$	$-0.3861(15)$	$0.7938(6)$	0.098^{*}	
H5	0.3439	-0.4510	0.8574	$0.0625(18)$	
C6	$0.2547(5)$	$-0.1828(13)$	$0.7627(4)$	0.075^{*}	
H6	0.2226	-0.1086	0.8051	$0.0408(14)$	
C7	$0.1061(4)$	$0.2251(11)$	$0.5504(4)$	$0.0407(14)$	
C8	$0.0227(4)$	$0.4323(11)$	$0.5484(3)$	0.049^{*}	
H8A	-0.0337	0.3441	0.5655		

H8B	0.0530	0.5691	0.5975	0.049^{*}	$0.910(8)$
C9	$0.4042(6)$	$-0.5247(16)$	$0.5729(5)$	$0.098(3)$	$0.910(8)$
H9A	0.4538	-0.3979	0.5624	0.147^{*}	$0.910(8)$
H9B	0.3516	-0.5661	0.5116	0.147^{*}	$0.910(8)$
H9C	0.4403	-0.6878	0.6010	0.147^{*}	$0.090(8)$
C9'	$0.367(4)$	$-0.529(11)$	$0.878(4)$	$0.041(18)$	$0.090(8)$
H9'A $^{\prime}$	0.4200	-0.6566	0.8750	0.061^{*}	$0.090(8)$
H9'B	0.3956	-0.4078	0.9317	0.061^{*}	$0.090(8)$
H9'C	0.3080	-0.6241	0.8861	0.061^{*}	
O2	$0.0524(3)$	$0.1884(9)$	$0.2803(2)$	$0.0583(12)$	
H21	0.0046	0.3006	0.2619	0.087^{*}	
H22	0.0756	0.1747	0.3415	0.087^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.071(3)$	$0.067(3)$	$0.038(2)$	$0.022(2)$	$0.016(2)$	$-0.002(2)$
N1	$0.054(3)$	$0.047(3)$	$0.040(3)$	$0.010(3)$	$0.015(2)$	$-0.002(2)$
C1	$0.038(3)$	$0.038(4)$	$0.057(4)$	$-0.006(3)$	$0.006(3)$	$-0.005(3)$
C2	$0.052(4)$	$0.055(4)$	$0.067(4)$	$0.000(4)$	$0.018(3)$	$0.002(4)$
C3	$0.043(4)$	$0.053(5)$	$0.101(6)$	$0.005(4)$	$0.018(4)$	$0.003(4)$
C4	$0.057(5)$	$0.056(5)$	$0.098(6)$	$0.010(4)$	$0.001(4)$	$0.020(5)$
C5	$0.080(6)$	$0.070(6)$	$0.080(5)$	$0.009(5)$	$0.006(4)$	$0.023(5)$
C6	$0.067(4)$	$0.058(5)$	$0.054(4)$	$0.007(4)$	$0.007(3)$	$0.009(4)$
C7	$0.046(4)$	$0.035(4)$	$0.037(3)$	$-0.004(3)$	$0.007(3)$	$0.000(3)$
C8	$0.051(3)$	$0.035(4)$	$0.036(3)$	$0.006(3)$	$0.014(3)$	$-0.001(3)$
C9	$0.086(6)$	$0.099(7)$	$0.121(7)$	$0.037(5)$	$0.051(5)$	$0.005(6)$
C9	$0.041(18)$	$0.040(19)$	$0.040(18)$	$0.000(5)$	$0.013(7)$	$0.001(5)$
O2	$0.079(3)$	$0.062(3)$	$0.037(2)$	$0.012(2)$	$0.023(2)$	$0.008(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C7	1.219 (5)	C6-H6	0.9300
N1-C7	1.340 (6)	C7-C8	1.509 (6)
N1-C1	1.409 (6)	C8-C8 ${ }^{\text {i }}$	1.492 (8)
N1-H1N	0.8600	C8-H8A	0.9700
C1-C2	1.378 (7)	С8-H8B	0.9700
C1-C6	1.385 (7)	C9-H9A	0.9600
C2-C3	1.398 (8)	C9-H9B	0.9600
C2-H2	0.9300	C9-H9C	0.9600
C3-C4	1.368 (8)	C9'-H9'A	0.9600
C3-C9	1.466 (8)	C9'- ${ }^{\prime} 9^{\prime}{ }^{\text {B }}$	0.9600
C4-C5	1.358 (8)	C9'- ${ }^{\prime} 9^{\prime} \mathrm{C}$	0.9600
C4-H4	0.9300	O2-H21	0.8235
C5-C6	1.375 (8)	$\mathrm{O} 2-\mathrm{H} 22$	0.8398
C5-H5	0.9300		
C7-N1-C1	130.1 (5)	C1-C6-H6	120.3

$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	115.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	115.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.1(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$123.6(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$117.2(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.6(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.2(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 9$	$121.1(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$119.7(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$120.1(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.5(7)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.2
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.2
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.4(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.3
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$5.4(9)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-173.6(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.3(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.4(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 9$	$0.1(9)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.4(6)$
$\mathrm{C} 9-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.8(10)$
	$-178.5(7)$

O1-C7-N1	122.8 (5)
O1-C7-C8	123.2 (5)
N1-C7-C8	114.0 (5)
C8--C8-C7	113.5 (5)
C8- $\mathrm{C}^{\text {i }}$ - H 8 A	108.9
C7-C8-H8A	108.9
C8 ${ }^{\text {i }}$ - 8 - -H 8 B	108.9
C7-C8-H8B	108.9
H8A-C8-H8B	107.7
C3-C9-H9A	109.5
C3-C9-H9B	109.5
H9A-C9—H9B	109.5
C3-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
H9'A-C9'- ${ }^{\prime} 9^{\prime}$ В	109.5
H9'A - $\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{H} 9^{\prime} \mathrm{C}$	109.5
H9'B-C9'-H9'C	109.5
$\mathrm{H} 21-\mathrm{O} 2-\mathrm{H} 22$	112.4
C3-C4-C5-C6	-1.5 (11)
C4-C5-C6-C1	1.3 (10)
C2-C1-C6-C5	-0.4 (9)
N1-C1-C6-C5	178.7 (5)
C1-N1-C7-O1	-1.5 (9)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	177.3 (5)
O1-C7-C8- $\mathrm{C}^{\text {i }}$	-5.3 (9)
N1-C7-C8-C8 ${ }^{\text {i }}$	175.9 (6)

Symmetry code: (i) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.10	$2.946(6)$	169
$\mathrm{O} 2 — \mathrm{H} 21 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.82	2.08	$2.836(4)$	153
$\mathrm{O} 2 — \mathrm{H} 22 \cdots \mathrm{O} 1$	0.84	1.87	$2.713(5)$	178

Symmetry codes: (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $-x, y+1 / 2,-z+1 / 2$.

