

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-tert-Butyl-6-(cyclohexyliminomethyl)-4-methoxyphenol

Roghayieh Jamjah,^a* Mehdi Nekoomanesh,^a* Tayebeh Pourjafar,^b Gholam Hossein Zohuri,^c Faramarz Afshartaromi^b and Behrouz Notash^d

^aDepartment of Catalyst Polymerization Engineering Faculty, Iran Polymer and Petrochemical Institute (ippi), PO Box 14965/115, 14185/485, Tehran, Iran, ^bChemistry Group Amirkabir University, Tehran, Iran, ^cDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad,, Iran, and ^dDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran Correspondence e-mail: R.Jamjah@ippi.ac.ir, M.nekoomansh@ippi.ac.ir

Received 5 June 2011; accepted 15 June 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.059; wR factor = 0.209; data-to-parameter ratio = 22.4.

The asymmetric unit of the title Schiff base compound, C₁₈H₂₇NO₂, contains two independent molecules in which the C=N bond lengths are 1.278(2) and 1.280(2) Å and the cyclohexane rings adopt chair conformations. Intramolecular O-H···N hydrogen bonding between hydroxy and imine groups and weak $C-H \cdots O$ hydrogen bonds help to stabilize the molecular structure.

Related literature

For general background to the synthesis and catalytic activity of the FI family of early transition metal olefin polymerization catalysts, see: Matsui & Fujita (2001); Matsui et al. (1999, 2001); Makio et al. (2002); Suzuki et al. (2006); Saito et al. (2002); Parssinen et al. (2005). For background to the synthesis of Schiff base compounds, see: Hofsløkkn & Skattebøl (1999); Wang et al. (1994); Gregson et al. (2006); Bigi et al. (2000). For the synthesis of phenoxy-imine ligands and their complexes, see: Matsukawa et al. (2001); Tohi et al. (2004); Makio et al. (2002). For related structures, see: Hiller et al. (1993); Darensbourg et al. (2005).

6731 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.095$

Experimental

Crystal data

C ₁₈ H ₂₇ NO ₂	$\gamma = 92.46 \ (3)^{\circ}$
$M_r = 289.41$	V = 1657.8 (8) Å ³
Triclinic, P1	Z = 4
a = 10.388 (2) Å	Mo $K\alpha$ radiation
b = 13.325 (3) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 13.766 (3) Å	$T = 120 { m K}$
$\alpha = 111.37 \ (3)^{\circ}$	$0.45 \times 0.45 \times 0.30 \text{ mm}$
$\beta = 108.31 \ (3)^{\circ}$	

Data collection

Stoe IPDS II diffractometer 18474 measured reflections 8861 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of
$wR(F^2) = 0.209$	independent and constrained
S = 1.09	refinement
8861 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
395 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

l able 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···N1	0.88 (3)	1.77 (3)	2.5918 (19)	156 (3)
$O3-H2 \cdot \cdot \cdot N2$	0.90 (3)	1.73 (3)	2.5901 (19)	159 (3)
$C5-H5B\cdots O1$	0.96	2.34	2.994 (2)	125
C6−H6B···O1	0.96	2.36	3.004 (2)	124
C23−H23 <i>B</i> ···O3	0.96	2.41	3.051 (2)	124
$C24-H24B\cdots O3$	0.96	2.36	3.000 (2)	124

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Iran Polymer and Petrochemical Institute (ippi) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5239).

References

- Bigi, F., Conforti, M. L., Maggi, R. & Sartori, G. (2000). Tetrahedron, 56, 2709-2712
- Darensbourg, D. J., Mackiewicz, R. M. & Billodeaux, D. R. (2005). Organometallics, 24, 144-148.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gregson, C. K. A., Blackmore, I. J., Gibson, V. C., Long, N. J., Marshall, E. L. & White, A. J. P. (2006). Dalton Trans. pp. 3134-3140.
- Hiller, W., Nishinaga, A., Tsutsui, T. & Rieker, A. (1993). Acta Cryst. C49, 1357-1359.
- Hofsløkkn, N. U. & Skattebøl, L. (1999). Acta Chem. Scand. 53, 258-262.
- Makio, H., Kashiwa, N. & Fujita, T. (2002). Adv. Synth. Catal. 344, 477-493.
- Matsui, S. & Fujita, T. (2001). Catal. Today, 66, 63-73.
- Matsui, S., Mitani, M., Saito, J., Tohi, Y., Makio, H., Matsukawa, N., Takagi, Y., Tsuru, K., Nitabaru, M., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2001). J. Am. Chem. Soc. 123, 6847-6856.

- Matsui, S., Tohi, S., Mitani, M., Saito, J., Makio, H., Tanaka, H., Nitabaru, M., Nakano, T. & Fujita, T. (1999). *Chem. Lett.* pp. 1065–1066.
- Matsukawa, N., Matsui, S., Mitani, M., Saito, J., Tsuru, K., Kashiwa, N. & Fujita, T. (2001). J. Mol. Catal. A, 169, 99-104.
- Parssinen, A., Luhtanen, T., Klinga, M., Pakkanen, T., Leskela, M. & Repo, T. (2005). Eur. J. Inorg. Chem. pp. 2100–2109.
- Saito, J., Mitani, M., Matsui, S., Tohi, Y., Makio, H., Nakano, T., Tanaka, H., Kashiwa, N. & Fujita, T. (2002). *Macromol. Chem. Phys.* **203**, 59–65.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Suzuki, Y., Tanaka, H., Oshiki, T., Takai, K. & Fujita, T. (2006). *Chem. Asia J.* 1, 878–887.
- Tohi, Y., Nakano, T., Makio, H. Y., Matsui, S. K., Fujita, T. & Yamaguthi, T. (2004). Macromol. Chem. Phys. 205, 1179–1186.
- Wang, R.-X., You, X.-Z., Meng, Q.-J., Mintz, E. A. & Bu, X.-R. (1994). Synth. Commun. 24, 1757–1760.

supporting information

Acta Cryst. (2011). E67, o1775-o1776 [doi:10.1107/S1600536811023385]

2-tert-Butyl-6-(cyclohexyliminomethyl)-4-methoxyphenol

Roghayieh Jamjah, Mehdi Nekoomanesh, Tayebeh Pourjafar, Gholam Hossein Zohuri, Faramarz Afshartaromi and Behrouz Notash

S1. Comment

In the late 1990s' Fujita group discovered and developed a new family of early transition metal catalysts [FI catalysts] (Matsui & Fujita, 2001; Matsui *et al.*, 2001; Makio *et al.*, 2002). These new catalysts with two phenoxy-imine chelate ligands were discovered on the basis of, ligand oriented catalyst design concept, and show high activity for olefin polymerization (Matsui *et al.*, 1999; Suzuki *et al.*, 2006).

FI catalysts can produce a wide variety of new polymers whose are comparable to those produced by group 4 metallocen catalysts which are unobtainable with conventional Ziegler-Natta catalysts. FI catalysts are generally comprised of transition metals (Zr, Ti, *etc*) (Suzuki *et al.*, 2006) and ligand(*s*) with general formula of L_2MX_2 (*M*= Transition metal, L = ancillary ligand(*s*), and *X*= monodentate anionic ligand such as halide or amide (Matsui & Fujita, 2001; Saito *et al.*, 2002; Parssinen *et al.*, 2005). The basic phenoxy-imine ligand systems can be divided into two bases reactant: primary amines and salicylaldehyde derivatives.

Usually amines and some salicylaldehyde derivatives commercially are available, but some of them such as 2-hydroxy-3-*tert*-butyl-5-methoxy benzaldehyde and the ones with desired substituents are not commercially available and can be synthesized by straight forward synthetic methods. Formylation at the 2-position of phenols can be performed using paraformaldehyde with many established methods in high yields (typically 70–80%). Electron donating substitueants such as methoxy group at the *para* position of phenoxy oxygen in benzene ring enhance the rate of formulation reaction. Salicylaldehydes and primary amines are condensed into Schiff bases under standard condensation condition which can obtain with high selectivity and yields (Hofsløkkn & Skattebøl, 1999; Wang *et al.*, 1994; Gregson *et al.*, 2006; Bigi *et al.*, 2000). Generally, the overall synthesis requires fewer steps and gives higher yield than those for metallocences. Rational design of the phenoxy-imine ligand and its effect on activity, thermal stability and molecular weight capabilities and molecular weight distributions that could be achieved by varying combination of R_1 , R_2 and R_3 groups on the final ligand (Matsukawa *et al.*, 2001; Tohi *et al.*, 2004). Once again, designing the ligand frame work by addition of an electron-donating group in the R_3 position, can be impart a large electronic influence on the Zirconium and strengthening the metal-ligand interactions (Makio *et al.*, 2002).

Herein, we report synthesis and crystal structure of new schiff base compound ((*E*)-2-*tert*-butyl-6-((cyclohexylimino)methyl)-4-methoxyphenol). The asymmetric unit of the title compound is shown in Fig. 1 and contain two molecules of schiff base compound. The bond lengths and angles are comparable to those observed for schiff base ligands (Hiller *et al.*, 1993; Darensbourg *et al.*, 2005). In the crystal structure of title compound, there is intramolecular bifurcated C—H···O hydrogen bondings between two methyl from t-buthyl group and hydroxy group and also intramolecular O—H···N between hydroxy and nitrogen of imine part (Table 1 & Fig. 2).

S2. Experimental

Ligand synthesis was carried out under an atmosphere of nitrogen using oven-dried glassware. To a 100 ml flask thoroughly purged with nitrogen, 30 ml of ethanol, 1.90 g (12.0 mmol) of dried and fresh distilled cyclohexylamine and 2.08 g (10.0 mmol) of 5-methoxy 3 - t-butylsalicylaldehyde were introduced. After addition of 5 g of activated molecular sieve 3 Å, the mixture was stirred at room temperature for 12 h and then filtered. The molecular sieve 3 Å was washed with ethyl acetate (20 ml). The combined organic filtrates were concentrated in vacuum to afford a crude imine compound. Reaction solution was concentrated under reduced pressure and yellow salicylaldimine obtained. Then the product recrystallized with petroleum ether (m.p. 90°C).

S3. Refinement

Hydroxy H atoms were found in a difference Fourier map and refined isotropically without restraint. Other H atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 to 0.97 Å, $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the others.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

The intramolecular C—H···O and O—H···N hydrogen bonds are shown as green dashed lines.

2-tert-Butyl-6-(cyclohexyliminomethyl)-4-methoxyphenol

Crystal data

C₁₈H₂₇NO₂ $M_r = 289.41$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.388 (2) Å b = 13.325 (3) Å c = 13.766 (3) Å a = 111.37 (3)° $\beta = 108.31$ (3)° $\gamma = 92.46$ (3)° V = 1657.8 (8) Å³

Data collection

Stoe IPDS II diffractometer Radiation source: fine-focus sealed tube Graphite monochromator rotation method scans 18474 measured reflections 8861 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.209$ Z = 4 F(000) = 632 $D_x = 1.160 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8861 reflections $\theta = 2.2-29.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 120 K Block, yellow $0.45 \times 0.45 \times 0.30 \text{ mm}$

6731 reflections with $I > 2\sigma(I)$ $R_{int} = 0.095$ $\theta_{max} = 29.2^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -18 \rightarrow 18$ $l = -18 \rightarrow 17$

S = 1.098861 reflections 395 parameters 0 restraints

Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.1285P)^2 + 0.3083P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C16	0.5193 (2)	0.86759 (17)	0.75550 (16)	0.0300 (4)	
H16A	0.6094	0.8661	0.8040	0.036*	
H16B	0.4585	0.8812	0.7980	0.036*	
C15	0.5309(2)	0.95981 (16)	0.71639 (17)	0.0299 (4)	
H15A	0.5737	1.0281	0.7808	0.036*	
H15B	0.4393	0.9677	0.6764	0.036*	
C22	0.0841 (2)	0.92025 (15)	0.75356 (17)	0.0331 (4)	
H22A	0.0078	0.8755	0.6875	0.050*	
H22B	0.1657	0.9235	0.7354	0.050*	
H22C	0.0647	0.9928	0.7831	0.050*	
C23	-0.02620 (19)	0.86686 (15)	0.86736 (18)	0.0288 (4)	
H23A	-0.0458	0.9396	0.8948	0.043*	
H23B	-0.0145	0.8374	0.9230	0.043*	
H23C	-0.1013	0.8213	0.8008	0.043*	
C9	0.5171 (2)	0.77887 (18)	-0.01564 (17)	0.0305 (4)	
H9A	0.4676	0.7175	-0.0137	0.046*	
H9B	0.4935	0.7714	-0.0915	0.046*	
H9C	0.4929	0.8453	0.0267	0.046*	
C24	0.22712 (19)	0.94703 (14)	0.94596 (15)	0.0252 (4)	
H24A	0.3098	0.9478	0.9288	0.038*	
H24B	0.2397	0.9210	1.0042	0.038*	
H24C	0.2070	1.0198	0.9702	0.038*	
C34	0.3333 (2)	0.47319 (16)	1.27358 (16)	0.0276 (4)	
H34A	0.3090	0.5397	1.3176	0.033*	
H34B	0.3644	0.4326	1.3199	0.033*	
C17	0.4637 (2)	0.75723 (16)	0.65698 (17)	0.0282 (4)	
H17A	0.3696	0.7558	0.6131	0.034*	
H17B	0.4631	0.6997	0.6843	0.034*	
C21	0.10645 (18)	0.87064 (13)	0.84100 (14)	0.0211 (3)	

C35	0.2062 (2)	0.40417 (15)	1.17212 (16)	0.0258 (4)
H35A	0.1321	0.3905	1.1969	0.031*
H35B	0.2277	0.3341	1.1328	0.031*
C33	0.44981 (19)	0.50278 (16)	1.23801 (16)	0.0267 (4)
H33A	0.5266	0.5506	1.3035	0.032*
H33B	0.4815	0.4367	1.2016	0.032*
C14	0.6155 (2)	0.93769 (14)	0.64054 (16)	0.0252 (4)
H14A	0.7104	0.9396	0.6834	0.030*
H14B	0.6144	0.9950	0.6127	0.030*
C18	0.55131 (19)	0.73550 (14)	0.58295 (15)	0.0229 (3)
H18A	0.6434	0.7303	0.6249	0.028*
H18B	0.5113	0.6662	0.5194	0.028*
C5	1.10265 (18)	0.69749 (15)	0.36589 (16)	0.0242 (3)
H5A	1.0633	0.6314	0.2998	0.036*
H5B	1.0630	0.6974	0.4201	0.036*
H5C	1.2005	0.7016	0.3960	0.036*
C4	1.13992 (17)	0.79552 (14)	0.25165 (15)	0.0231 (3)
H4A	1.1003	0.7297	0.1853	0.035*
H4B	1.2372	0.7980	0.2832	0.035*
H4C	1.1244	0.8580	0.2333	0.035*
C32	0.40216 (18)	0.55994 (14)	1.15850 (15)	0.0231 (3)
H32A	0.4763	0.5732	1.1336	0.028*
H32B	0.3815	0.6303	1.1981	0.028*
C6	1.13788 (18)	0.90406 (15)	0.44140 (15)	0.0245 (4)
H6A	1.2357	0.9078	0.4705	0.037*
H6B	1.0997	0.9055	0.4969	0.037*
H6C	1.1188	0.9656	0.4221	0.037*
C36	0.15883 (17)	0.46204 (14)	1.09267 (15)	0.0220 (3)
H36A	0.0821	0.4143	1.0271	0.026*
H36B	0.1269	0.5279	1.1293	0.026*
C13	0.55966 (17)	0.82658 (14)	0.54196 (14)	0.0197 (3)
H13	0.4673	0.8274	0.4944	0.024*
C31	0.27464 (17)	0.49260 (13)	1.05690 (13)	0.0187 (3)
H31	0.2986	0.4256	1.0114	0.022*
C12	0.60610 (16)	0.80873 (13)	0.37989 (13)	0.0175 (3)
H12	0.5148	0.8157	0.3509	0.021*
C2	0.91611 (15)	0.79247 (12)	0.28903 (13)	0.0157 (3)
C20	0.13799 (16)	0.75429 (12)	0.79790 (14)	0.0176 (3)
C3	1.07256 (16)	0.79689 (13)	0.33652 (14)	0.0180 (3)
C28	0.18954 (16)	0.53761 (13)	0.71137 (13)	0.0175 (3)
H28	0.2065	0.4667	0.6831	0.021*
C8	0.70950 (16)	0.78842 (12)	0.13850 (13)	0.0165 (3)
C7	0.85104 (16)	0.78786 (12)	0.18216 (13)	0.0164 (3)
H7	0.9035	0.7843	0.1376	0.020*
C19	0.16492 (16)	0.69245 (12)	0.86441 (13)	0.0168 (3)
C25	0.13920 (17)	0.70439 (13)	0.69027 (14)	0.0198 (3)
H25	0.1234	0.7440	0.6456	0.024*
C26	0.16305 (17)	0.59721 (13)	0.64589 (13)	0.0184 (3)

C30	0.22574 (16)	0.52199 (13)	0.89036 (14)	0.0180 (3)
H30	0.2456	0.4525	0.8597	0.022*
C29	0.19070 (16)	0.58498 (12)	0.82116 (13)	0.0166 (3)
C10	0.63036 (16)	0.79534 (12)	0.20365 (13)	0.0172 (3)
H10	0.5371	0.7979	0.1764	0.021*
C11	0.69178 (16)	0.79842 (12)	0.31176 (13)	0.0165 (3)
C1	0.83340 (15)	0.79518 (12)	0.35442 (13)	0.0159 (3)
O2	0.66130 (12)	0.78253 (10)	0.03121 (10)	0.0212 (3)
03	0.16646 (14)	0.73745 (10)	0.97098 (10)	0.0220 (3)
01	0.89028 (12)	0.79569 (10)	0.45748 (10)	0.0209 (3)
O4	0.15796 (14)	0.56103 (10)	0.53771 (10)	0.0244 (3)
N2	0.23021 (15)	0.55850 (11)	0.99129 (12)	0.0199 (3)
N1	0.65112 (14)	0.80861 (12)	0.47775 (12)	0.0195 (3)
C27	0.1861 (2)	0.45401 (15)	0.49089 (15)	0.0269 (4)
H27A	0.2804	0.4526	0.5289	0.040*
H27B	0.1701	0.4344	0.4132	0.040*
H27C	0.1266	0.4028	0.4990	0.040*
H2	0.189 (3)	0.684 (3)	0.995 (3)	0.055 (9)*
H1	0.824 (3)	0.806 (2)	0.485 (2)	0.042 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U ¹³	U ²³
C16	0.0371 (10)	0.0400 (10)	0.0257 (9)	0.0166 (8)	0.0208 (8)	0.0178 (8)
C15	0.0407 (11)	0.0292 (9)	0.0264 (9)	0.0154 (8)	0.0195 (8)	0.0109 (7)
C22	0.0500 (12)	0.0195 (8)	0.0288 (9)	0.0098 (8)	0.0078 (8)	0.0134 (7)
C23	0.0243 (8)	0.0204 (8)	0.0370 (10)	0.0088 (6)	0.0076 (7)	0.0086 (7)
C9	0.0233 (9)	0.0467 (11)	0.0256 (9)	0.0104 (8)	0.0059 (7)	0.0208 (8)
C24	0.0262 (8)	0.0179 (7)	0.0251 (8)	0.0022 (6)	0.0044 (7)	0.0059 (6)
C34	0.0337 (9)	0.0342 (9)	0.0250 (9)	0.0167 (8)	0.0136 (7)	0.0188 (8)
C17	0.0282 (9)	0.0335 (9)	0.0332 (10)	0.0061 (7)	0.0178 (8)	0.0186 (8)
C21	0.0248 (8)	0.0148 (7)	0.0202 (8)	0.0044 (6)	0.0040 (6)	0.0063 (6)
C35	0.0285 (9)	0.0285 (8)	0.0302 (9)	0.0068 (7)	0.0149 (7)	0.0184 (7)
C33	0.0214 (8)	0.0331 (9)	0.0257 (9)	0.0088 (7)	0.0038 (7)	0.0152 (7)
C14	0.0312 (9)	0.0206 (7)	0.0274 (9)	0.0050 (6)	0.0153 (7)	0.0093 (7)
C18	0.0258 (8)	0.0201 (7)	0.0259 (8)	0.0044 (6)	0.0141 (7)	0.0082 (6)
C5	0.0206 (8)	0.0254 (8)	0.0324 (9)	0.0113 (6)	0.0111 (7)	0.0157 (7)
C4	0.0168 (7)	0.0261 (8)	0.0281 (9)	0.0048 (6)	0.0106 (6)	0.0101 (7)
C32	0.0199 (8)	0.0242 (8)	0.0255 (8)	0.0023 (6)	0.0056 (6)	0.0124 (7)
C6	0.0172 (7)	0.0251 (8)	0.0245 (8)	0.0007 (6)	0.0053 (6)	0.0047 (7)
C36	0.0190 (7)	0.0246 (8)	0.0221 (8)	0.0013 (6)	0.0043 (6)	0.0118 (6)
C13	0.0175 (7)	0.0255 (8)	0.0209 (8)	0.0067 (6)	0.0111 (6)	0.0104 (6)
C31	0.0232 (7)	0.0167 (7)	0.0177 (7)	0.0060 (6)	0.0069 (6)	0.0083 (6)
C12	0.0157 (7)	0.0184 (7)	0.0193 (7)	0.0037 (5)	0.0073 (6)	0.0073 (6)
C2	0.0143 (6)	0.0136 (6)	0.0196 (7)	0.0027 (5)	0.0068 (6)	0.0063 (5)
C20	0.0163 (7)	0.0160 (7)	0.0203 (7)	0.0028 (5)	0.0046 (6)	0.0086 (6)
C3	0.0137 (7)	0.0174 (7)	0.0233 (8)	0.0041 (5)	0.0075 (6)	0.0076 (6)
C28	0.0168 (7)	0.0165 (7)	0.0190 (7)	0.0032 (5)	0.0068 (6)	0.0063 (6)

supporting information

C8	0.0195 (7)	0.0151 (6)	0.0167 (7)	0.0038 (5)	0.0063 (6)	0.0083 (5)	
C7	0.0186 (7)	0.0136 (6)	0.0193 (7)	0.0036 (5)	0.0095 (6)	0.0067 (5)	
C19	0.0160 (7)	0.0171 (7)	0.0166 (7)	0.0026 (5)	0.0053 (5)	0.0063 (6)	
C25	0.0215 (7)	0.0186 (7)	0.0200 (8)	0.0021 (6)	0.0055 (6)	0.0103 (6)	
C26	0.0196 (7)	0.0200 (7)	0.0172 (7)	0.0023 (6)	0.0079 (6)	0.0081 (6)	
C30	0.0165 (7)	0.0164 (6)	0.0216 (7)	0.0028 (5)	0.0065 (6)	0.0084 (6)	
C29	0.0145 (6)	0.0166 (7)	0.0192 (7)	0.0023 (5)	0.0050 (5)	0.0084 (6)	
C10	0.0163 (7)	0.0171 (7)	0.0189 (7)	0.0042 (5)	0.0065 (6)	0.0076 (6)	
C11	0.0158 (7)	0.0168 (7)	0.0179 (7)	0.0032 (5)	0.0071 (6)	0.0072 (6)	
C1	0.0155 (7)	0.0156 (6)	0.0155 (7)	0.0030 (5)	0.0045 (5)	0.0060 (5)	
O2	0.0212 (6)	0.0271 (6)	0.0199 (6)	0.0070 (5)	0.0079 (5)	0.0134 (5)	
O3	0.0317 (7)	0.0204 (6)	0.0172 (6)	0.0101 (5)	0.0109 (5)	0.0085 (5)	
01	0.0168 (5)	0.0301 (6)	0.0193 (6)	0.0075 (5)	0.0079 (5)	0.0121 (5)	
O4	0.0354 (7)	0.0228 (6)	0.0183 (6)	0.0062 (5)	0.0132 (5)	0.0087 (5)	
N2	0.0233 (7)	0.0183 (6)	0.0202 (7)	0.0054 (5)	0.0073 (5)	0.0100 (5)	
N1	0.0165 (6)	0.0246 (7)	0.0202 (7)	0.0049 (5)	0.0095 (5)	0.0095 (5)	
C27	0.0298 (9)	0.0298 (9)	0.0209 (8)	0.0104 (7)	0.0117 (7)	0.0068 (7)	

Geometric parameters (Å, °)

C16—C17	1.522 (3)	C4—H4B	0.9600
C16—C15	1.525 (3)	C4—H4C	0.9600
C16—H16A	0.9700	C32—C31	1.528 (3)
C16—H16B	0.9700	С32—Н32А	0.9700
C15—C14	1.525 (3)	С32—Н32В	0.9700
C15—H15A	0.9700	C6—C3	1.544 (2)
C15—H15B	0.9700	C6—H6A	0.9600
C22—C21	1.535 (3)	С6—Н6В	0.9600
C22—H22A	0.9600	С6—Н6С	0.9600
C22—H22B	0.9600	C36—C31	1.527 (2)
C22—H22C	0.9600	С36—Н36А	0.9700
C23—C21	1.535 (3)	С36—Н36В	0.9700
C23—H23A	0.9600	C13—N1	1.461 (2)
С23—Н23В	0.9600	С13—Н13	0.9800
С23—Н23С	0.9600	C31—N2	1.466 (2)
С9—О2	1.424 (2)	C31—H31	0.9800
С9—Н9А	0.9600	C12—N1	1.280 (2)
С9—Н9В	0.9600	C12—C11	1.460 (2)
С9—Н9С	0.9600	C12—H12	0.9300
C24—C21	1.541 (3)	C2—C7	1.390 (2)
C24—H24A	0.9600	C2—C1	1.419 (2)
C24—H24B	0.9600	C2—C3	1.539 (2)
C24—H24C	0.9600	C20—C25	1.390 (2)
C34—C33	1.527 (3)	C20—C19	1.416 (2)
C34—C35	1.530 (3)	C28—C26	1.380 (2)
C34—H34A	0.9700	C28—C29	1.406 (2)
C34—H34B	0.9700	C28—H28	0.9300
C17—C18	1.530 (2)	C8—O2	1.373 (2)

С17—Н17А	0.9700	C8—C10	1.378 (2)
C17—H17B	0.9700	C8—C7	1.404 (2)
C21—C20	1.536 (2)	С7—Н7	0.9300
C35—C36	1.530 (2)	C19—O3	1.362 (2)
С35—Н35А	0.9700	C19—C29	1.410 (2)
С35—Н35В	0.9700	C25—C26	1.401 (2)
C33—C32	1.524 (3)	C25—H25	0.9300
C33—H33A	0.9700	C26—O4	1370(2)
C33 H33R	0.9700	C_{20} N2	1.378(2)
C14 C13	1,520 (3)	C_{30} C_{20}	1.270(2) 1.461(2)
C14 = C13	1.329(3)	$C_{20} = U_{20}$	1.401(2)
C14—H14A	0.9700	C10 C11	0.9300
C14—H14B	0.9700		1.407 (2)
C18—C13	1.523 (2)	C10—H10	0.9300
C18—H18A	0.9700	C11—C1	1.411 (2)
C18—H18B	0.9700	C1—01	1.3521 (19)
C5—C3	1.537 (2)	O3—H2	0.90 (3)
С5—Н5А	0.9600	O1—H1	0.88 (3)
С5—Н5В	0.9600	O4—C27	1.421 (2)
С5—Н5С	0.9600	С27—Н27А	0.9600
C4—C3	1.534 (2)	С27—Н27В	0.9600
C4—H4A	0.9600	С27—Н27С	0.9600
C17—C16—C15	111 12 (16)	$C_{33} - C_{32} - C_{31}$	112 33 (14)
C_{17} C_{16} H_{16A}	100 4	C_{22} C_{22} C_{21}	100.1
$C_{1} = C_{10} = H_{16A}$	109.4	$C_{33} - C_{32} - H_{32A}$	109.1
C13—C10—H10A	109.4	C_{22} C_{22} H_{22}	109.1
	109.4	C33—C32—H32B	109.1
С15—С16—Н16В	109.4	C31—C32—H32B	109.1
H16A—C16—H16B	108.0	H32A—C32—H32B	107.9
C16—C15—C14	111.66 (15)	С3—С6—Н6А	109.5
C16—C15—H15A	109.3	С3—С6—Н6В	109.5
C14—C15—H15A	109.3	H6A—C6—H6B	109.5
C16—C15—H15B	109.3	С3—С6—Н6С	109.5
C14—C15—H15B	109.3	Н6А—С6—Н6С	109.5
H15A—C15—H15B	108.0	H6B—C6—H6C	109.5
C21—C22—H22A	109.5	C31—C36—C35	111.78 (14)
C21—C22—H22B	109.5	С31—С36—Н36А	109.3
H22A—C22—H22B	109.5	С35—С36—Н36А	109.3
$C_{21} - C_{22} - H_{22}C_{22}$	109.5	C31—C36—H36B	109.3
H_{22}^{22} H_{22}^{22} H_{22}^{22}	109.5	C35 C36 H36B	109.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	H36A C36 H36B	107.0
1122D - C22 - 1122C	109.5	N1 C12 C19	107.9
$C_2I = C_{23} = H_{23}R$	109.5	NI-C12-C14	110.41(13)
$U_2 I = U_2 J = H_2 J B$	109.5	N1 - C13 - C14	108.41 (14)
H23A—C23—H23B	109.5	C18—C13—C14	110.51 (15)
C21—C23—H23C	109.5	N1—C13—H13	109.2
H23A—C23—H23C	109.5	C18—C13—H13	109.2
H23B—C23—H23C	109.5	C14—C13—H13	109.2
О2—С9—Н9А	109.5	N2-C31-C36	110.14 (14)
O2—C9—H9B	109.5	N2-C31-C32	108.00 (13)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H34A-C34-H34B108.0C5-C3-C2110.35 (13)C16-C17-C18111.30 (15)C4-C3-C6107.98 (14)C16-C17-H17A109.4C5-C3-C6110.16 (15)C18-C17-H17A109.4C2-C3-C6109.21 (13)C16-C17-H17B109.4C26-C28-C29119.45 (14)C18-C17-H17B109.4C26-C28-H28120.3C17-H17B109.4C26-C28-H28120.3C17-H17B109.4C26-C28-H28120.3C23-C21-C22107.67 (16)02-C8-C10125.03 (15)C23-C21-C20109.33 (14)02-C8-C7119.53 (15)C23-C21-C20111.61 (15)C10-C8-C7119.53 (15)C23-C21-C24110.20 (15)C2-C7-C8122.81 (14)C22-C21-C24107.34 (15)C2-C7-H7118.6C34-C35-C36111.26 (15)03-C19-C29119.94 (14)C34-C35-H35A109.4C29-C19-C20120.42 (15)C34-C35-H35B109.4C20-C25-C26123.13 (15)C36-C35-H35B109.4C20-C25-H25118.4H35A-C35-H35B108.0C26-C25-H25118.4C32-C3-C34111.13 (15)04-C26-C28125.54 (15)
Internet of the last of t
C16C17C16C17C16C17C16C17C16C17C16C17C16C17C16C17C16C17C17C16C17C17C16C17C
C18C17H111H011C2C3C6H011H111H011H111H011H111H011H111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C23-C21-C22 $107.67 (16)$ $02-C8-C10$ $125.03 (15)$ $C23-C21-C20$ $109.33 (14)$ $02-C8-C7$ $115.45 (14)$ $C22-C21-C20$ $111.61 (15)$ $C10-C8-C7$ $119.53 (15)$ $C23-C21-C24$ $110.20 (15)$ $C2-C7-C8$ $122.81 (14)$ $C22-C21-C24$ $107.34 (15)$ $C2-C7-H7$ 118.6 $C20-C21-C24$ $110.64 (14)$ $C8-C7-H7$ 118.6 $C34-C35-C36$ $111.26 (15)$ $O3-C19-C29$ $119.94 (14)$ $C34-C35-H35A$ 109.4 $C29-C19-C20$ $120.42 (15)$ $C34-C35-H35B$ 109.4 $C20-C25-C26$ $123.13 (15)$ $C36-C35-H35B$ 109.4 $C20-C25-H25$ 118.4 $H35A-C35-H35B$ 108.0 $C26-C25-H25$ 118.4 $C32-C33-C34$ $111.13 (15)$ $O4-C26-C28$ $125.54 (15)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C23 - C21 - C24 $I10.20 (15)$ $C2 - C7 - C8$ $I22.81 (14)$ $C22 - C21 - C24$ $107.34 (15)$ $C2 - C7 - H7$ $I18.6$ $C20 - C21 - C24$ $107.34 (15)$ $C2 - C7 - H7$ $I18.6$ $C20 - C21 - C24$ $110.64 (14)$ $C8 - C7 - H7$ $I18.6$ $C34 - C35 - C36$ $111.26 (15)$ $O3 - C19 - C29$ $I19.94 (14)$ $C34 - C35 - H35A$ 109.4 $O3 - C19 - C20$ $I19.64 (14)$ $C36 - C35 - H35A$ 109.4 $C29 - C19 - C20$ $I20.42 (15)$ $C34 - C35 - H35B$ 109.4 $C20 - C25 - C26$ $I23.13 (15)$ $C36 - C35 - H35B$ 109.4 $C20 - C25 - H25$ $I18.4$ $H35A - C35 - H35B$ 108.0 $C26 - C25 - H25$ $I18.4$ $C32 - C33 - C34$ $I11.13 (15)$ $O4 - C26 - C28$ $I25.54 (15)$
C22 - C21 - C24 $110.26 (15)$ $C2 - C7 - H7$ 118.6 $C20 - C21 - C24$ $107.34 (15)$ $C2 - C7 - H7$ 118.6 $C34 - C35 - C36$ $111.26 (15)$ $O3 - C19 - C29$ $119.94 (14)$ $C34 - C35 - H35A$ 109.4 $O3 - C19 - C20$ $119.64 (14)$ $C34 - C35 - H35A$ 109.4 $C29 - C19 - C20$ $120.42 (15)$ $C34 - C35 - H35B$ 109.4 $C20 - C25 - C26$ $123.13 (15)$ $C36 - C35 - H35B$ 109.4 $C20 - C25 - H25$ 118.4 $H35A - C35 - H35B$ 108.0 $C26 - C25 - H25$ 118.4 $C32 - C33 - C34$ $111.13 (15)$ $O4 - C26 - C28$ $125.54 (15)$
C22 - C21 - C24 $107.51(15)$ $C2 - C7 - H7$ 110.6 $C20 - C21 - C24$ $110.64(14)$ $C8 - C7 - H7$ 118.6 $C34 - C35 - C36$ $111.26(15)$ $O3 - C19 - C29$ $119.94(14)$ $C34 - C35 - H35A$ 109.4 $O3 - C19 - C20$ $119.64(14)$ $C36 - C35 - H35A$ 109.4 $C29 - C19 - C20$ $120.42(15)$ $C34 - C35 - H35B$ 109.4 $C20 - C25 - C26$ $123.13(15)$ $C36 - C35 - H35B$ 109.4 $C20 - C25 - H25$ 118.4 $H35A - C35 - H35B$ 108.0 $C26 - C25 - H25$ 118.4 $C32 - C33 - C34$ $111.13(15)$ $O4 - C26 - C28$ $125.54(15)$
C34-C35-C36 $111.26(15)$ $O3-C19-C29$ $119.94(14)$ $C34-C35-H35A$ 109.4 $O3-C19-C20$ $119.64(14)$ $C36-C35-H35A$ 109.4 $C29-C19-C20$ $120.42(15)$ $C34-C35-H35B$ 109.4 $C20-C25-C26$ $123.13(15)$ $C36-C35-H35B$ 109.4 $C20-C25-H25$ 118.4 $H35A-C35-H35B$ 108.0 $C26-C25-H25$ 118.4 $H35A-C35-H35B$ 108.0 $C26-C25-H25$ 118.4 $C32-C33-C34$ $111.13(15)$ $O4-C26-C28$ $125.54(15)$
C34—C35—H35A109.4O3—C19—C20119.64 (14)C36—C35—H35A109.4C29—C19—C20120.42 (15)C34—C35—H35B109.4C20—C25—C26123.13 (15)C36—C35—H35B109.4C20—C25—H25118.4H35A—C35—H35B108.0C26—C25—H25118.4C32—C33—C34111.13 (15)O4—C26—C28125.54 (15)
C36—C35—H35A 109.4 C29—C19—C20 120.42 (15) C34—C35—H35B 109.4 C20—C25—C26 123.13 (15) C36—C35—H35B 109.4 C20—C25—H25 118.4 H35A—C35—H35B 108.0 C26—C25—H25 118.4 C32—C33—C34 111.13 (15) O4—C26—C28 125.54 (15)
C34—C35—H35B 109.4 C20—C25—C26 123.13 (15) C36—C35—H35B 109.4 C20—C25—H25 118.4 H35A—C35—H35B 108.0 C26—C25—H25 118.4 C32—C33—C34 111.13 (15) O4—C26—C28 125.54 (15)
C36—C35—H35B 109.4 C20—C25—H25 118.4 H35A—C35—H35B 108.0 C26—C25—H25 118.4 C32—C33—C34 111.13 (15) O4—C26—C28 125.54 (15)
H35A-C35-H35B 108.0 C26-C25-H25 118.4 C32-C33-C34 111.13 (15) O4-C26-C28 125.54 (15)
C32—C33—C34 111.13 (15) O4—C26—C28 125.54 (15)
111,13(13) $01 020 020 123,31(13)$
C32—C33—H33A 109.4 O4—C26—C25 114.97 (15)
C34—C33—H33A 109.4 C28—C26—C25 119.50 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H33A = C33 = H33B = 108.0 C29 = C30 = H30 118.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C15—C14—H14B 109.3 C8—C10—C11 119.47 (14)
C13—C14—H14B 109.3 C8—C10—H10 120.3
H14A—C14—H14B 107.9 C11—C10—H10 120.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C13—C18—H18A 109.4 C10—C11—C12 118 20 (14)

C17—C18—H18A	109.4	C1-C11-C12	120.91 (14)
C13—C18—H18B	109.4	01-C1-C11	120.17(14)
C17—C18—H18B	109.4	01-C1-C2	120.15(14)
H18A—C18—H18B	108.0	$C_{11} - C_{1} - C_{2}$	119.68 (14)
C3—C5—H5A	109.5	C8-O2-C9	116.08 (14)
C3—C5—H5B	109.5	C19 - O3 - H2	102 (2)
H5A—C5—H5B	109.5	C1	102(2) 1038(19)
C3-C5-H5C	109.5	$C_{26} - 04 - C_{27}$	116 66 (14)
H5A—C5—H5C	109.5	$C_{30} N_{2} C_{31}$	119.08 (14)
H5B-C5-H5C	109.5	C12 - N1 - C13	118.63 (14)
C3—C4—H4A	109.5	04—C27—H27A	109 5
C3—C4—H4B	109.5	O4-C27-H27B	109.5
H4A - C4 - H4B	109.5	H27A—C27—H27B	109.5
$C_3 - C_4 - H_4C$	109.5	04-C27-H27C	109.5
H4A - C4 - H4C	109.5	$H_{27A} - C_{27} - H_{27C}$	109.5
H4B-C4-H4C	109.5	H27B - C27 - H27C	109.5
пны ст пне	107.5	11270-027-11270	109.5
C17—C16—C15—C14	-542(2)	C_{21} C_{20} C_{25} C_{26}	-177 91 (15)
C_{15} C_{16} C_{17} C_{18}	554(2)	C_{29} C_{28} C_{26} C_{40}	-17958(15)
C_{33} C_{34} C_{35} C_{36}	-55.5(2)	C_{29} C_{28} C_{26} C_{25} C_{25}	0.7(2)
$C_{35} = C_{34} = C_{33} = C_{32}^{32}$	55 2 (2)	$C_{20} = C_{25} = C_{26} = C_{25}$	178.90(15)
C_{16} C_{15} C_{14} C_{13}	53.2(2) 544(2)	C_{20} C_{25} C_{26} C_{78}	-13(3)
C_{16} C_{17} C_{18} C_{13}	-56.8(2)	$C_{26} = C_{28} = C_{29} = C_{19}$	0.1(2)
C_{34} C_{33} C_{32} C_{31}	-55.0(2)	$C_{26} = C_{28} = C_{29} = C_{30}$	-177.03(14)
$C_{34} = C_{35} = C_{32} = C_{31}$	55.0(2)	$C_{20} = C_{20} = C_{20} = C_{20} = C_{20}$	-179.94(14)
C17 - C18 - C13 - N1	176 14 (14)	C_{20} C_{19} C_{29} C_{20} C_{28}	-0.2(2)
C17 - C18 - C13 - C14	56 2 (2)	03-C19-C29-C30	-29(2)
$C_{17} = C_{13} = C_{13} = C_{14}$	-176.30(15)	C_{20} C_{19} C_{29} C_{30}	2.7(2)
C15-C14-C13-C18	-553(2)	$N_2 = C_{30} = C_{29} = C_{30}$	170.78(14) 179.60(15)
$C_{13} = C_{14} = C_{13} = C_{16}$	-173.66(14)	$N_2 = C_{30} = C_{23} = C_{23}$	25(2)
$C_{35} = C_{30} = C_{31} = C_{32}$	-54.10(19)	0^{2} 0^{8} 0^{10} 0^{11}	2.3(2) 178 57 (14)
$C_{33} = C_{30} = C_{31} = C_{32}$	175.06(14)	C_{2} C_{8} C_{10} C_{11}	-10(2)
$C_{33} = C_{32} = C_{31} = C_{36}$	5/ 31 (10)	C_{1} C_{1} C_{1} C_{1} C_{1}	0.4(2)
$C_{33} = C_{32} = C_{31} = C_{30}$	116.85(18)	$C_{8} = C_{10} = C_{11} = C_{12}$	(2)
$C_{23} = C_{21} = C_{20} = C_{23}$	(10.03)(10)	$C_{0} - C_{10} - C_{11} - C_{12}$	178.56(14) 177.62(15)
$C_{22} = C_{21} = C_{20} = C_{25}$	-12160(17)	N1 = C12 = C11 = C10	-4.4(2)
$C_{24} = C_{21} = C_{20} = C_{23}$	-622(2)	$C_{10} C_{11} C_{1} C_{1} O_{1}$	-178.49(14)
$C_{23} = C_{21} = C_{20} = C_{19}$	178.83(16)	$C_{12} = C_{11} = C_{1} = C_{1}$	36(2)
$C_{22} = C_{21} = C_{20} = C_{19}$	178.83(10)	$C_{12} = C_{11} = C_{1} = C_{1}$	3.0(2)
$C_{24} = C_{21} = C_{20} = C_{19}$	39.4(2)	$C_{10} = C_{11} = C_{1} = C_{2}$	2.1(2) -175 82 (14)
$C_{1} = C_{2} = C_{3} = C_{4}$	-178.60(14)	$C_{12} = C_{11} = C_{12} = C_{22}$	175.62(14)
$C_1 = C_2 = C_3 = C_4$	-110.66(16)	$C^{2} = C^{2} = C^{1} = O^{1}$	-3.6(2)
$C_{1} = C_{2} = C_{3} = C_{5}$	-119.00(10)	C_{3} C_{2} C_{1} C_{11}	-3.0(2)
$C_1 - C_2 - C_3 - C_3$	110 11 (16)	$C_{1} = C_{2} = C_{1} = C_{11}$	3.0(2) 175 78 (12)
$C_1 = C_2 = C_3 = C_6$	-50.63 (10)	$C_{10} C_{8} O_{2} C_{9}$	-27(2)
$C_1 = C_2 = C_3 = C_0$	1 5 (2)	$C_1 = C_0 = C_2 = C_2$	2.7(2)
$C_1 - C_2 - C_7 - C_8$	1.3(2) -177.24(14)	$C_1 = C_0 = 0_2 = C_9$	-1.7(2)
$C_{3} - C_{2} - C_{1} - C_{0}$	1/1.24(14) -170/48(12)	$C_{20} = C_{20} = C_{4} = C_{27}$	1.7(4)
02 - 03 - 07 - 02	-1/9.48(13)	$U_{23} - U_{20} - U_{4} - U_{21}$	1/8.01 (15)

supporting information

C10—C8—C7—C2	0.9 (2)	C29—C30—N2—C31	-176.24 (14)
C25—C20—C19—O3	179.36 (14)	C36—C31—N2—C30	-118.58 (17)
C21—C20—C19—O3	-1.6 (2)	C32—C31—N2—C30	120.23 (16)
C25—C20—C19—C29	-0.4 (2)	C11-C12-N1-C13	176.05 (14)
C21—C20—C19—C29	178.70 (14)	C18-C13-N1-C12	127.20 (17)
C19—C20—C25—C26	1.2 (2)	C14—C13—N1—C12	-111.61 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
01—H1…N1	0.88 (3)	1.77 (3)	2.5918 (19)	156 (3)
O3—H2…N2	0.90 (3)	1.73 (3)	2.5901 (19)	159 (3)
C5—H5 <i>B</i> ···O1	0.96	2.34	2.994 (2)	125
C6—H6 <i>B</i> ···O1	0.96	2.36	3.004 (2)	124
C23—H23 <i>B</i> ···O3	0.96	2.41	3.051 (2)	124
C24—H24 <i>B</i> ···O3	0.96	2.36	3.000 (2)	124