organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1727-o1728

1-(1-Hy­dr­oxy­eth­yl)-7,8-di­hydro­indolo[2,3-a]pyridine­[3,4-g]quinolizin-5(13H)-one (angustoline) monohydrate from Nauclea subdita (Rubiaceae)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 12 June 2011; accepted 13 June 2011; online 18 June 2011)

The title compound (trivial name: angustoline monohydrate), C20H17N3O2·H2O, features a fused-ring system formed by one five- and four six-membered rings. The nearly planar benzimidazole portion (r.m.s. deviation = 0.008 Å) and the nearly planar 2,7-naphthyridin-1-one portion (r.m.s. deviation = 0.022 Å) of the fused-ring system are slightly twisted, with a dihedral angle of 9.47 (8)°, owing to the tetra­hedral nature of the two methyl­ene linkages in the central six-membered ring. The secondary N atom acts as a hydrogen-bond donor to the water molecule of crystallization. In the crystal, the amino and hy­droxy groups, and the water mol­ecule are engaged in hydrogen bonding, generating a three-dimensional network.

Related literature

For the isolation of the title compound from other plants, see: Abreu & Pereira (1998[Abreu, P. & Pereira, A. (1998). Heterocycles, 48, 885-891.], 2001[Abreu, P. & Pereira, A. (2001). Nat. Prod. Lett. 15, 43-48.]); Au et al. (1973[Au, T. Y., Cheung, H. T. & Sternhell, S. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 13-16.]); Carte et al. (1990[Carte, B. K., Debrosse, C., Eggleston, D., Hemling, M., Mentzer, M., Poehland, B., Troupe, N. & Westley, J. W. (1990). Tetrahedron, 46, 2747-2760.]); Erdelmeier et al. (1992[Erdelmeier, C. A. J., Regenass, U., Rali, T. & Sticher, O. (1992). Planta Med. 58, 43-48.]); Fan et al. (2010[Fan, L., Fan, C. L., Wang, Y., Zhang, X.-Q., Zhang, Q.-W., Zhang, J.-Q. & Ye, W.-C. (2010). Yaoxue Xuebao, 45, 747-751.]); Hotellier et al. (1975[Hotellier, F., Delaveau, P. & Pousset, J. (1975). Phytochemistry, 14, 1407-1409.]); Kakuguchi et al. (2009[Kakuguchi, Y., Ishiyama, H., Kubota, T. & Kobayashi, J. (2009). Heterocycles, 79, 765-771.]); Lin et al. (1988[Lin, L.-Z., Shen, J.-H., He, X. & Zhang, W.-Y. (1988). Huaxue Xuebao, 46, 1207-1211.]); Sun et al. (2008[Sun, J.-Y., Lou, H.-X., Dai, S.-J., Xu, H., Zhao, F. & Liu, K. (2008). Phytochemistry, 69, 1405-1410.]); Xuan et al. (2007[Xuan, W.-D., Bian, J. & Chen, H.-S. (2007). Zhongcaoyao, 38, 170-173.]); Zeches et al. (1985[Zeches, M., Richard, B., Gueye-M'Bahia, L., Le Men-Olivier, L. & Delaude, C. (1985). J. Nat. Prod. 48, 42-46.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17N3O2·H2O

  • Mr = 349.38

  • Monoclinic, P 21

  • a = 8.8350 (3) Å

  • b = 6.7002 (2) Å

  • c = 14.7347 (4) Å

  • β = 103.117 (3)°

  • V = 849.48 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.30 × 0.03 × 0.03 mm

Data collection
  • Agilent SuperNova Dual with an Atlas detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.803, Tmax = 0.978

  • 6453 measured reflections

  • 3252 independent reflections

  • 3015 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.02

  • 3252 reflections

  • 251 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1395 Friedel pairs

  • Flack parameter: 0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3i 0.97 (4) 1.77 (4) 2.732 (2) 171 (3)
O1w—H11⋯O1ii 0.85 (4) 2.08 (4) 2.928 (2) 169 (3)
O1w—H12⋯O2iii 0.83 (4) 1.95 (4) 2.762 (2) 167 (3)
N1—H1⋯O1w 0.85 (3) 2.02 (3) 2.861 (2) 177 (2)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The alkaloid angustoline has been isolated from a number of plants: Camptotheca acuminata (Carte et al., 1990; Lin et al., 1988), Nauclea latifolia (Kakuguchi et al., 2009; Hotellier et al., 1975), Nauclea officinalis (Fan et al., 2010; Sun et al., 2008; Xuan et al., 2007), Nauclea orientalis (Erdelmeier et al., 1992), Nauclea pobeguinii (Zeches et al., 1985), Sarcocephalus latifolius (Abreu & Pereira, 1998; 2001) and Strychnos angustiflora (Au et al., 1973).

The alkaloid is isolated in the crystalline form as a monohydrate (Scheme I). The planar benzimidazole portion and the planar 2,7-naphthyridin-1-one portion of the fused-ring system are slightly twisted [dihedral angle 9.47 (8)°] owing to the tetrahedral nature of the two methylene linkages (Fig. 1). The secondary N atom is hydrogen-bond donor to the water molecule. The amino and hydroxy groups, and the lattice water molecule are engaged in hydrogen bonding to furnish a three-dimensional network (Table 1).

Related literature top

For the isolation of the title compound from other plants, see: Abreu & Pereira (1998, 2001); Au et al. (1973); Carte et al. (1990); Erdelmeier et al. (1992); Fan et al. (2010); Hotellier et al. (1975); Kakuguchi et al. (2009); Lin et al. (1988); Sun et al. (2008); Xuan et al. (2007); Zeches et al. (1985).

Experimental top

Nauclea subdita (Rubiaceae) was collected from Bukit Kinta forest reserve, Chemor, Perak, Malaysia, and specimens were deposited at the Herbarium, Department of Chemistry, University of Malaya.

Dried and ground bark of Nauclea subdita (1.7 kg) was extracted with hexane (17 L) for 3 days. The hexane extract was concentrated under reduced pressure. The dried plant material was soaked in ammonium hydroxide for 2 h. It was further extracted with dichloromethane (17 L) for 3 days. The dichloromethane extract was concentrated under reduced pressure to give a crude alkaloid (7.1 g). A portion (6.0 g) was subjected to column chromatography on silica gel 60 GF254 by using a step gradient of dichloromethane and methanol. One of the fractions when further purified by using dichloromethane/methanol (95:5) afforded the pure compound, whose formulation was established by NMR spectroscopic analysis.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The nitrogen and oxygen bound H-atoms were located in a difference Fourier map, and were freely refined.

The Flack parameter was determined from 1395 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H17N3O2.H2O at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1-(1-Hydroxyethyl)-7,8-dihydroindolo[2,3-a]pyridine[3,4- g]quinolizin-5(13H)-one monohydrate top
Crystal data top
C20H17N3O2·H2OF(000) = 368
Mr = 349.38Dx = 1.366 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 3352 reflections
a = 8.8350 (3) Åθ = 3.1–74.0°
b = 6.7002 (2) ŵ = 0.76 mm1
c = 14.7347 (4) ÅT = 100 K
β = 103.117 (3)°Prism, yellow
V = 849.48 (4) Å30.30 × 0.03 × 0.03 mm
Z = 2
Data collection top
Agilent SuperNova Dual with an Atlas detector
diffractometer
3252 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3015 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 74.2°, θmin = 3.1°
ω scansh = 119
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 78
Tmin = 0.803, Tmax = 0.978l = 1718
6453 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.0395P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3252 reflectionsΔρmax = 0.29 e Å3
251 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1395 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C20H17N3O2·H2OV = 849.48 (4) Å3
Mr = 349.38Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.8350 (3) ŵ = 0.76 mm1
b = 6.7002 (2) ÅT = 100 K
c = 14.7347 (4) Å0.30 × 0.03 × 0.03 mm
β = 103.117 (3)°
Data collection top
Agilent SuperNova Dual with an Atlas detector
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3015 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.978Rint = 0.027
6453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.23 e Å3
3252 reflectionsAbsolute structure: Flack (1983), 1395 Friedel pairs
251 parametersAbsolute structure parameter: 0.1 (2)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33730 (17)0.5046 (2)0.78985 (11)0.0309 (3)
O20.76411 (17)0.6678 (2)0.44802 (9)0.0280 (3)
H20.677 (4)0.578 (5)0.429 (2)0.061 (9)*
O1W1.0970 (2)0.2216 (3)0.70030 (13)0.0384 (4)
H111.157 (4)0.316 (6)0.725 (2)0.060 (10)*
H121.125 (4)0.196 (6)0.652 (2)0.063 (10)*
N10.89459 (18)0.0009 (2)0.78964 (11)0.0210 (3)
H10.953 (3)0.071 (4)0.7637 (15)0.022 (6)*
N20.54310 (19)0.2982 (2)0.79266 (12)0.0234 (3)
N30.4603 (2)0.8811 (3)0.59777 (12)0.0280 (4)
C10.9248 (2)0.1772 (3)0.83570 (12)0.0212 (4)
C21.0553 (2)0.3025 (3)0.84619 (13)0.0238 (4)
H2A1.14030.26940.81950.029*
C31.0547 (2)0.4757 (3)0.89683 (12)0.0245 (4)
H31.14050.56440.90400.029*
C40.9304 (2)0.5250 (3)0.93830 (12)0.0256 (4)
H40.93400.64520.97290.031*
C50.8035 (2)0.3999 (3)0.92892 (12)0.0236 (4)
H50.72040.43280.95740.028*
C60.7989 (2)0.2238 (3)0.87687 (12)0.0214 (4)
C70.6920 (2)0.0637 (3)0.85452 (13)0.0218 (4)
C80.5381 (2)0.0264 (3)0.87749 (14)0.0250 (4)
H8A0.53770.08130.93980.030*
H8B0.45450.09240.83110.030*
C90.5108 (2)0.1974 (3)0.87643 (14)0.0280 (4)
H9A0.40150.22290.87890.034*
H9B0.57810.25660.93300.034*
C100.6769 (2)0.2496 (3)0.76131 (13)0.0209 (4)
C110.7537 (2)0.0699 (3)0.80190 (12)0.0214 (4)
C120.7238 (2)0.3627 (3)0.69551 (13)0.0205 (4)
H12A0.81310.32450.67400.025*
C130.6401 (2)0.5366 (3)0.65911 (12)0.0207 (4)
C140.5043 (2)0.5833 (3)0.69001 (13)0.0224 (4)
C150.4529 (2)0.4620 (3)0.75959 (13)0.0238 (4)
C160.4187 (2)0.7539 (3)0.65684 (13)0.0250 (4)
H160.32630.78020.67750.030*
C170.5887 (2)0.8336 (3)0.56645 (13)0.0274 (4)
H170.61790.92200.52300.033*
C180.6799 (2)0.6681 (3)0.59251 (12)0.0230 (4)
C190.8136 (2)0.6270 (3)0.54537 (13)0.0260 (4)
H190.84210.48260.55370.031*
C200.9565 (3)0.7508 (4)0.58426 (16)0.0396 (5)
H20A1.03800.71780.55140.059*
H20B0.99380.72200.65080.059*
H20C0.93060.89280.57580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (7)0.0272 (7)0.0445 (8)0.0050 (6)0.0228 (6)0.0025 (6)
O20.0305 (7)0.0321 (7)0.0238 (7)0.0063 (6)0.0114 (6)0.0003 (6)
O1W0.0409 (9)0.0419 (10)0.0405 (9)0.0122 (7)0.0261 (7)0.0102 (7)
N10.0210 (7)0.0209 (8)0.0245 (7)0.0005 (6)0.0125 (6)0.0017 (6)
N20.0229 (8)0.0223 (8)0.0300 (8)0.0018 (6)0.0161 (6)0.0006 (6)
N30.0267 (9)0.0310 (10)0.0272 (8)0.0079 (7)0.0081 (7)0.0055 (7)
C10.0232 (9)0.0216 (9)0.0197 (8)0.0019 (7)0.0068 (7)0.0023 (7)
C20.0233 (9)0.0278 (10)0.0222 (8)0.0038 (7)0.0089 (7)0.0024 (7)
C30.0263 (9)0.0255 (10)0.0218 (8)0.0061 (7)0.0057 (7)0.0009 (7)
C40.0324 (10)0.0217 (10)0.0234 (9)0.0005 (8)0.0080 (8)0.0014 (7)
C50.0268 (9)0.0231 (9)0.0233 (8)0.0033 (8)0.0107 (7)0.0011 (7)
C60.0215 (8)0.0225 (9)0.0218 (8)0.0013 (7)0.0081 (7)0.0036 (7)
C70.0232 (9)0.0207 (9)0.0243 (8)0.0015 (7)0.0109 (7)0.0025 (7)
C80.0239 (9)0.0218 (10)0.0337 (10)0.0013 (7)0.0161 (7)0.0023 (8)
C90.0323 (10)0.0241 (10)0.0344 (10)0.0022 (8)0.0222 (9)0.0029 (8)
C100.0206 (8)0.0194 (9)0.0255 (9)0.0002 (7)0.0114 (7)0.0032 (7)
C110.0218 (8)0.0205 (9)0.0248 (8)0.0004 (7)0.0112 (7)0.0049 (7)
C120.0189 (8)0.0222 (10)0.0232 (8)0.0002 (7)0.0105 (7)0.0024 (7)
C130.0188 (8)0.0248 (10)0.0198 (8)0.0010 (7)0.0070 (7)0.0036 (6)
C140.0204 (8)0.0242 (9)0.0240 (8)0.0003 (7)0.0082 (7)0.0011 (7)
C150.0224 (9)0.0214 (10)0.0305 (9)0.0003 (7)0.0122 (7)0.0026 (7)
C160.0218 (9)0.0287 (10)0.0266 (9)0.0021 (7)0.0101 (7)0.0002 (8)
C170.0273 (10)0.0328 (11)0.0233 (9)0.0028 (8)0.0086 (8)0.0062 (7)
C180.0223 (9)0.0277 (10)0.0201 (8)0.0006 (7)0.0073 (7)0.0015 (8)
C190.0251 (9)0.0320 (11)0.0235 (8)0.0017 (7)0.0107 (7)0.0020 (7)
C200.0277 (10)0.0625 (15)0.0319 (11)0.0070 (10)0.0134 (8)0.0115 (10)
Geometric parameters (Å, º) top
O1—C151.237 (2)C7—C111.375 (3)
O2—C191.428 (2)C7—C81.495 (2)
O2—H20.97 (4)C8—C91.518 (3)
O1W—H110.85 (4)C8—H8A0.9900
O1W—H120.83 (4)C8—H8B0.9900
N1—C11.369 (2)C9—H9A0.9900
N1—C111.378 (2)C9—H9B0.9900
N1—H10.85 (3)C10—C121.366 (2)
N2—C151.379 (3)C10—C111.443 (3)
N2—C101.402 (2)C12—C131.419 (3)
N2—C91.490 (2)C12—H12A0.9500
N3—C161.328 (3)C13—C141.412 (2)
N3—C171.356 (3)C13—C181.421 (3)
C1—C21.406 (3)C14—C161.396 (3)
C1—C61.418 (2)C14—C151.459 (3)
C2—C31.380 (3)C16—H160.9500
C2—H2A0.9500C17—C181.373 (3)
C3—C41.412 (3)C17—H170.9500
C3—H30.9500C18—C191.525 (2)
C4—C51.381 (3)C19—C201.511 (3)
C4—H40.9500C19—H191.0000
C5—C61.403 (3)C20—H20A0.9800
C5—H50.9500C20—H20B0.9800
C6—C71.418 (3)C20—H20C0.9800
C19—O2—H2102.3 (19)H9A—C9—H9B107.7
H11—O1W—H12104 (3)C12—C10—N2121.26 (17)
C1—N1—C11107.94 (15)C12—C10—C11124.55 (16)
C1—N1—H1129.4 (16)N2—C10—C11114.15 (15)
C11—N1—H1122.2 (16)C7—C11—N1109.94 (17)
C15—N2—C10122.12 (15)C7—C11—C10124.60 (16)
C15—N2—C9116.72 (15)N1—C11—C10125.37 (16)
C10—N2—C9120.11 (16)C10—C12—C13120.54 (16)
C16—N3—C17116.71 (17)C10—C12—H12A119.7
N1—C1—C2129.66 (17)C13—C12—H12A119.7
N1—C1—C6108.67 (16)C14—C13—C12117.92 (16)
C2—C1—C6121.66 (17)C14—C13—C18116.52 (17)
C3—C2—C1117.27 (17)C12—C13—C18125.56 (16)
C3—C2—H2A121.4C16—C14—C13120.08 (16)
C1—C2—H2A121.4C16—C14—C15118.13 (16)
C2—C3—C4121.95 (17)C13—C14—C15121.74 (17)
C2—C3—H3119.0O1—C15—N2120.96 (17)
C4—C3—H3119.0O1—C15—C14122.63 (18)
C5—C4—C3120.55 (18)N2—C15—C14116.38 (16)
C5—C4—H4119.7N3—C16—C14123.12 (16)
C3—C4—H4119.7N3—C16—H16118.4
C4—C5—C6119.14 (17)C14—C16—H16118.4
C4—C5—H5120.4N3—C17—C18125.27 (19)
C6—C5—H5120.4N3—C17—H17117.4
C5—C6—C1119.41 (17)C18—C17—H17117.4
C5—C6—C7134.32 (17)C17—C18—C13118.21 (17)
C1—C6—C7106.26 (16)C17—C18—C19118.98 (17)
C11—C7—C6107.19 (16)C13—C18—C19122.73 (17)
C11—C7—C8121.06 (17)O2—C19—C20108.34 (17)
C6—C7—C8131.75 (17)O2—C19—C18109.32 (16)
C7—C8—C9108.24 (15)C20—C19—C18113.28 (16)
C7—C8—H8A110.1O2—C19—H19108.6
C9—C8—H8A110.1C20—C19—H19108.6
C7—C8—H8B110.1C18—C19—H19108.6
C9—C8—H8B110.1C19—C20—H20A109.5
H8A—C8—H8B108.4C19—C20—H20B109.5
N2—C9—C8113.37 (16)H20A—C20—H20B109.5
N2—C9—H9A108.9C19—C20—H20C109.5
C8—C9—H9A108.9H20A—C20—H20C109.5
N2—C9—H9B108.9H20B—C20—H20C109.5
C8—C9—H9B108.9
C11—N1—C1—C2177.98 (19)N2—C10—C11—C710.4 (3)
C11—N1—C1—C60.94 (19)C12—C10—C11—N18.9 (3)
N1—C1—C2—C3179.93 (17)N2—C10—C11—N1173.35 (17)
C6—C1—C2—C31.3 (3)N2—C10—C12—C131.9 (3)
C1—C2—C3—C41.2 (3)C11—C10—C12—C13179.54 (17)
C2—C3—C4—C50.3 (3)C10—C12—C13—C142.7 (3)
C3—C4—C5—C60.6 (3)C10—C12—C13—C18178.32 (18)
C4—C5—C6—C10.5 (3)C12—C13—C14—C16179.44 (17)
C4—C5—C6—C7178.7 (2)C18—C13—C14—C161.5 (3)
N1—C1—C6—C5179.48 (16)C12—C13—C14—C152.1 (3)
C2—C1—C6—C50.5 (3)C18—C13—C14—C15178.81 (17)
N1—C1—C6—C70.8 (2)C10—N2—C15—O1178.32 (18)
C2—C1—C6—C7178.23 (17)C9—N2—C15—O110.0 (3)
C5—C6—C7—C11178.7 (2)C10—N2—C15—C140.1 (3)
C1—C6—C7—C110.3 (2)C9—N2—C15—C14168.16 (17)
C5—C6—C7—C81.8 (4)C16—C14—C15—O10.0 (3)
C1—C6—C7—C8179.82 (19)C13—C14—C15—O1177.41 (18)
C11—C7—C8—C926.5 (3)C16—C14—C15—N2178.11 (18)
C6—C7—C8—C9154.1 (2)C13—C14—C15—N20.7 (3)
C15—N2—C9—C8147.19 (18)C17—N3—C16—C143.0 (3)
C10—N2—C9—C844.3 (3)C13—C14—C16—N31.6 (3)
C7—C8—C9—N247.4 (2)C15—C14—C16—N3175.87 (18)
C15—N2—C10—C120.5 (3)C16—N3—C17—C181.5 (3)
C9—N2—C10—C12168.38 (18)N3—C17—C18—C131.4 (3)
C15—N2—C10—C11178.32 (17)N3—C17—C18—C19175.34 (19)
C9—N2—C10—C1113.8 (2)C14—C13—C18—C172.8 (3)
C6—C7—C11—N10.2 (2)C12—C13—C18—C17178.17 (18)
C8—C7—C11—N1179.32 (17)C14—C13—C18—C19173.81 (17)
C6—C7—C11—C10176.94 (17)C12—C13—C18—C195.2 (3)
C8—C7—C11—C102.6 (3)C17—C18—C19—O241.1 (2)
C1—N1—C11—C70.7 (2)C13—C18—C19—O2135.53 (18)
C1—N1—C11—C10177.41 (17)C17—C18—C19—C2079.8 (2)
C12—C10—C11—C7167.33 (19)C13—C18—C19—C20103.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N3i0.97 (4)1.77 (4)2.732 (2)171 (3)
O1w—H11···O1ii0.85 (4)2.08 (4)2.928 (2)169 (3)
O1w—H12···O2iii0.83 (4)1.95 (4)2.762 (2)167 (3)
N1—H1···O1w0.85 (3)2.02 (3)2.861 (2)177 (2)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H17N3O2·H2O
Mr349.38
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.8350 (3), 6.7002 (2), 14.7347 (4)
β (°) 103.117 (3)
V3)849.48 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.30 × 0.03 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual with an Atlas detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.803, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
6453, 3252, 3015
Rint0.027
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections3252
No. of parameters251
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.23
Absolute structureFlack (1983), 1395 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N3i0.97 (4)1.77 (4)2.732 (2)171 (3)
O1w—H11···O1ii0.85 (4)2.08 (4)2.928 (2)169 (3)
O1w—H12···O2iii0.83 (4)1.95 (4)2.762 (2)167 (3)
N1—H1···O1w0.85 (3)2.02 (3)2.861 (2)177 (2)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+2, y1/2, z+1.
 

Acknowledgements

This work was carried under the aegis of a University of Malaya–CNRS (France) collaborative framework. We thank the Ministry of Higher Education (grant No. FRGS-FP016/2010 A) for financial support.

References

First citationAbreu, P. & Pereira, A. (1998). Heterocycles, 48, 885–891.  CrossRef CAS Google Scholar
First citationAbreu, P. & Pereira, A. (2001). Nat. Prod. Lett. 15, 43–48.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAu, T. Y., Cheung, H. T. & Sternhell, S. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 13–16.  CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCarte, B. K., Debrosse, C., Eggleston, D., Hemling, M., Mentzer, M., Poehland, B., Troupe, N. & Westley, J. W. (1990). Tetrahedron, 46, 2747–2760.  CrossRef CAS Google Scholar
First citationErdelmeier, C. A. J., Regenass, U., Rali, T. & Sticher, O. (1992). Planta Med. 58, 43–48.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFan, L., Fan, C. L., Wang, Y., Zhang, X.-Q., Zhang, Q.-W., Zhang, J.-Q. & Ye, W.-C. (2010). Yaoxue Xuebao, 45, 747–751.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHotellier, F., Delaveau, P. & Pousset, J. (1975). Phytochemistry, 14, 1407–1409.  CrossRef CAS Google Scholar
First citationKakuguchi, Y., Ishiyama, H., Kubota, T. & Kobayashi, J. (2009). Heterocycles, 79, 765–771.  CAS Google Scholar
First citationLin, L.-Z., Shen, J.-H., He, X. & Zhang, W.-Y. (1988). Huaxue Xuebao, 46, 1207–1211.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J.-Y., Lou, H.-X., Dai, S.-J., Xu, H., Zhao, F. & Liu, K. (2008). Phytochemistry, 69, 1405–1410.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXuan, W.-D., Bian, J. & Chen, H.-S. (2007). Zhongcaoyao, 38, 170–173.  CAS Google Scholar
First citationZeches, M., Richard, B., Gueye-M'Bahia, L., Le Men-Olivier, L. & Delaude, C. (1985). J. Nat. Prod. 48, 42–46.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages o1727-o1728
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds