organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,2-diaminium bis­­(4-meth­­oxy­benzoate)

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayrzl66@yahoo.com.cn

(Received 17 June 2011; accepted 19 June 2011; online 25 June 2011)

The asymmetric unit of the title salt, C3H12N22+·2C8H7O3, contains two 4-meth­oxy­benzoate anions and one propane-1,2-diaminium cation. All the amino H atoms of the cation are involved in N—H⋯O hydrogen bonds with the carboxyl­ate O atoms of the anions.

Related literature

For related amide-acid co-crystal compounds, see: Almarsson & Zaworotko (2004[Almarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. 17, 1889-1896.]); Blagden et al. (2008[Blagden, N., Berry, D. J., Parkin, A., Javed, H., Ibrahim, A., Gavan, P. T., De Matos, L. L. & Seaton, C. C. (2008). New J. Chem. 32, 1659-1672.]); Vishweshwar et al. (2006[Vishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499-516.]); Kapildev et al. (2011[Kapildev, K. A., Nitin, G. T. & Raj, S. (2011). Mol. Pharm. 8, 982-989.]); Schultheiss & Newman (2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]).

[Scheme 1]

Experimental

Crystal data
  • C3H12N22+·2C8H7O3

  • Mr = 378.42

  • Monoclinic, P 21 /c

  • a = 13.847 (3) Å

  • b = 11.296 (2) Å

  • c = 12.893 (3) Å

  • β = 92.38 (3)°

  • V = 2014.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • 20478 measured reflections

  • 4611 independent reflections

  • 2264 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.194

  • S = 1.03

  • 4611 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.90 1.82 2.696 (3) 162
N1—H1B⋯O1 0.90 1.92 2.791 (3) 162
N1—H1C⋯O1ii 0.90 1.89 2.777 (3) 167
N2—H2A⋯O5iii 0.90 1.82 2.718 (3) 173
N2—H2B⋯O4iv 0.90 2.03 2.917 (3) 170
N2—H2C⋯O2ii 0.90 1.81 2.703 (3) 1670
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molecular cocrystals are becoming increasingly important within the pharmaceutical industry as an alternative source of new solid crystalline materials with the potential to provide optimal physical properties whilst retaining the chemical properties of the cocrystal components (Almarsson & Zaworotko, 2004; Blagden et al., 2008; Vishweshwar et al., 2006). Physicochemical properties such as the melting point, stability and solubility of an active pharmaceutical ingredient can be tuned through cocrystal formulation (Kapildev et al., 2011; Schultheiss & Newman, 2009). Cocrystal synthesis often relies on the acid-amide H-bonds interactions. Herein, we report the crystal structure of the title compound, propane-1,2-diaminium di-4-methoxybenzoate.

The asymmetric unit is composed of two 4-methoxybenzoate anions and one propane-1,2-diaminium cation (Fig. 1). Both the amine N atoms were protonated. And the carboxyl groups were deprotonated. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the amino H atoms are involved in N—H···O hydrogen bonds with the carboxyl O atoms (Table 1 and Fig. 2).

Related literature top

For related amide-acid co-crystal compounds, see: Almarsson & Zaworotko (2004); Blagden et al. (2008); Vishweshwar et al. (2006); Kapildev et al. (2011); Schultheiss & Newman (2009).

Experimental top

A mixture of R-propane-1,2-diamine (1.0 mmol), 4-methoxybenzoic acid (2.0 mmol) and 20 ml ethanol were added into a 50 ml flask and refluxed for 5 h, then cooled and filtrated. The solution was evaporated slowly in the air. Colorless block crystals suitable for X-ray analysis were obtained after one week. The R-propane-1,2-diamine turned into racemic amine in the heating process.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.98 (methine), 0.97 (methylene), 0.96 (methyl) and 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C except methyl) and Uiso(H) = 1.5Ueq(C of methyl). The amino H atoms were placed in calculated positions and refined in riding mode with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis showing the two-dimensional hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Propane-1,2-diaminium bis(4-methoxybenzoate) top
Crystal data top
C3H12N22+·2C8H7O3F(000) = 808
Mr = 378.42Dx = 1.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4611 reflections
a = 13.847 (3) Åθ = 3.2–27.5°
b = 11.296 (2) ŵ = 0.09 mm1
c = 12.893 (3) ÅT = 298 K
β = 92.38 (3)°Block, colorless
V = 2014.8 (7) Å30.30 × 0.05 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2264 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.116
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 13.6612 pixels mm-1h = 1717
CCD profile fitting scansk = 1414
20478 measured reflectionsl = 1616
4611 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.210P]
where P = (Fo2 + 2Fc2)/3
4611 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C3H12N22+·2C8H7O3V = 2014.8 (7) Å3
Mr = 378.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.847 (3) ŵ = 0.09 mm1
b = 11.296 (2) ÅT = 298 K
c = 12.893 (3) Å0.30 × 0.05 × 0.05 mm
β = 92.38 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2264 reflections with I > 2σ(I)
20478 measured reflectionsRint = 0.116
4611 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
4611 reflectionsΔρmin = 0.26 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58273 (13)0.11367 (16)0.42325 (14)0.0557 (5)
O41.40303 (14)0.20038 (18)1.12055 (15)0.0653 (6)
O51.37392 (14)0.05243 (18)1.01087 (14)0.0620 (6)
N10.50945 (15)0.09975 (19)0.62133 (15)0.0498 (6)
H1A0.46350.15620.61810.075*
H1B0.54420.11110.56470.075*
H1C0.47800.03000.61730.075*
C101.28462 (19)0.2302 (2)0.9837 (2)0.0501 (7)
O20.67887 (14)0.0757 (2)0.29455 (15)0.0690 (6)
N20.46696 (16)0.00178 (19)0.83553 (16)0.0512 (6)
H2A0.43270.01140.89220.077*
H2B0.51280.05770.84570.077*
H2C0.42350.02640.78630.077*
C20.73928 (19)0.2000 (2)0.4300 (2)0.0467 (7)
C10.6619 (2)0.1256 (2)0.3787 (2)0.0477 (7)
C91.3588 (2)0.1555 (3)1.0418 (2)0.0535 (7)
O30.95714 (15)0.3848 (2)0.59171 (17)0.0752 (7)
C70.7231 (2)0.2669 (2)0.5179 (2)0.0520 (7)
H7A0.66130.26940.54320.062*
C180.57151 (19)0.1152 (3)0.7178 (2)0.0536 (8)
H18A0.60030.19420.71400.064*
O61.08060 (18)0.4243 (2)0.81081 (19)0.0930 (8)
C60.7958 (2)0.3295 (3)0.5685 (2)0.0584 (8)
H6A0.78250.37490.62640.070*
C141.1855 (2)0.4049 (3)0.9672 (3)0.0634 (8)
H14A1.16510.47660.99430.076*
C30.8322 (2)0.2004 (3)0.3933 (2)0.0578 (8)
H3A0.84470.15830.33330.069*
C190.5112 (2)0.1142 (2)0.8128 (2)0.0538 (7)
H19A0.55160.13820.87230.065*
H19B0.46010.17250.80340.065*
C40.9066 (2)0.2618 (3)0.4437 (2)0.0621 (8)
H4A0.96830.26080.41770.074*
C151.2534 (2)0.3372 (3)1.0210 (2)0.0556 (8)
H15A1.27900.36451.08440.067*
C111.2458 (2)0.1912 (3)0.8880 (2)0.0610 (8)
H11A1.26580.11920.86120.073*
C50.8888 (2)0.3252 (3)0.5335 (2)0.0578 (8)
C131.1480 (2)0.3652 (3)0.8723 (3)0.0643 (8)
C121.1784 (2)0.2581 (3)0.8329 (2)0.0695 (9)
H12A1.15320.23130.76910.083*
C81.0557 (2)0.3755 (3)0.5628 (3)0.0838 (11)
H8A1.09630.42090.61010.126*
H8B1.06160.40540.49360.126*
H8C1.07540.29400.56530.126*
C170.6536 (2)0.0284 (3)0.7205 (3)0.0834 (11)
H17A0.69340.04070.78230.125*
H17B0.69150.03970.66060.125*
H17C0.62840.05080.72030.125*
C161.0508 (3)0.5392 (4)0.8406 (3)0.1064 (14)
H16A1.00380.56890.79020.160*
H16B1.10570.59110.84430.160*
H16C1.02270.53520.90730.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0547 (12)0.0615 (13)0.0513 (11)0.0116 (10)0.0062 (10)0.0012 (9)
O40.0720 (14)0.0648 (13)0.0573 (12)0.0055 (11)0.0173 (10)0.0007 (11)
O50.0738 (14)0.0605 (13)0.0516 (12)0.0096 (11)0.0034 (10)0.0024 (11)
N10.0553 (14)0.0550 (14)0.0392 (12)0.0071 (11)0.0029 (11)0.0012 (11)
C100.0513 (17)0.0542 (18)0.0448 (15)0.0003 (14)0.0028 (13)0.0006 (14)
O20.0651 (14)0.0942 (16)0.0480 (12)0.0191 (11)0.0073 (10)0.0194 (11)
N20.0559 (14)0.0587 (15)0.0387 (12)0.0003 (12)0.0003 (11)0.0010 (11)
C20.0501 (17)0.0468 (16)0.0430 (15)0.0013 (13)0.0011 (13)0.0056 (13)
C10.0533 (18)0.0490 (17)0.0405 (16)0.0041 (14)0.0017 (14)0.0079 (13)
C90.0532 (18)0.066 (2)0.0416 (16)0.0069 (16)0.0064 (14)0.0029 (15)
O30.0579 (14)0.0904 (17)0.0763 (15)0.0086 (12)0.0097 (11)0.0223 (13)
C70.0525 (17)0.0523 (17)0.0513 (16)0.0005 (14)0.0048 (14)0.0006 (14)
C180.0538 (18)0.0624 (19)0.0442 (16)0.0064 (15)0.0028 (14)0.0030 (14)
O60.0970 (18)0.0944 (18)0.0850 (17)0.0279 (15)0.0254 (14)0.0055 (14)
C60.061 (2)0.0561 (18)0.0574 (18)0.0016 (15)0.0010 (16)0.0108 (15)
C140.059 (2)0.0568 (19)0.074 (2)0.0010 (16)0.0023 (17)0.0053 (17)
C30.0562 (19)0.070 (2)0.0472 (16)0.0062 (16)0.0072 (14)0.0060 (15)
C190.0635 (18)0.0525 (18)0.0447 (16)0.0050 (14)0.0041 (14)0.0028 (14)
C40.0476 (17)0.081 (2)0.0580 (18)0.0044 (16)0.0071 (15)0.0069 (17)
C150.0541 (18)0.0596 (19)0.0526 (17)0.0054 (15)0.0050 (14)0.0059 (15)
C110.0656 (19)0.067 (2)0.0497 (17)0.0071 (16)0.0064 (15)0.0097 (16)
C50.0551 (19)0.0623 (19)0.0549 (18)0.0030 (15)0.0094 (15)0.0046 (15)
C130.060 (2)0.064 (2)0.068 (2)0.0044 (16)0.0051 (17)0.0044 (18)
C120.077 (2)0.077 (2)0.0534 (18)0.0050 (18)0.0186 (17)0.0039 (17)
C80.056 (2)0.102 (3)0.092 (3)0.0092 (19)0.0091 (18)0.018 (2)
C170.066 (2)0.109 (3)0.076 (2)0.021 (2)0.0092 (18)0.022 (2)
C160.105 (3)0.093 (3)0.121 (3)0.047 (2)0.004 (3)0.013 (3)
Geometric parameters (Å, º) top
O1—C11.266 (3)O6—C161.420 (4)
O4—C91.269 (3)C6—C51.383 (4)
O5—C91.250 (3)C6—H6A0.9300
N1—C181.492 (3)C14—C151.377 (4)
N1—H1A0.9004C14—C131.384 (4)
N1—H1B0.9002C14—H14A0.9300
N1—H1C0.9004C3—C41.381 (4)
C10—C151.377 (4)C3—H3A0.9300
C10—C111.396 (4)C19—H19A0.9700
C10—C91.505 (4)C19—H19B0.9700
O2—C11.253 (3)C4—C51.393 (4)
N2—C191.481 (3)C4—H4A0.9300
N2—H2A0.9003C15—H15A0.9300
N2—H2B0.9006C11—C121.375 (4)
N2—H2C0.9005C11—H11A0.9300
C2—C71.387 (4)C13—C121.385 (4)
C2—C31.390 (4)C12—H12A0.9300
C2—C11.495 (4)C8—H8A0.9600
O3—C51.362 (3)C8—H8B0.9600
O3—C81.434 (3)C8—H8C0.9600
C7—C61.372 (4)C17—H17A0.9600
C7—H7A0.9300C17—H17B0.9600
C18—C171.500 (4)C17—H17C0.9600
C18—C191.511 (4)C16—H16A0.9600
C18—H18A0.9800C16—H16B0.9600
O6—C131.372 (4)C16—H16C0.9600
C18—N1—H1A109.7C2—C3—H3A119.2
C18—N1—H1B110.5N2—C19—C18114.4 (2)
H1A—N1—H1B105.2N2—C19—H19A108.6
C18—N1—H1C114.2C18—C19—H19A108.6
H1A—N1—H1C106.1N2—C19—H19B108.6
H1B—N1—H1C110.6C18—C19—H19B108.6
C15—C10—C11118.1 (3)H19A—C19—H19B107.6
C15—C10—C9122.4 (3)C3—C4—C5119.6 (3)
C11—C10—C9119.5 (3)C3—C4—H4A120.2
C19—N2—H2A104.5C5—C4—H4A120.2
C19—N2—H2B110.8C10—C15—C14121.9 (3)
H2A—N2—H2B113.0C10—C15—H15A119.0
C19—N2—H2C113.8C14—C15—H15A119.0
H2A—N2—H2C105.3C12—C11—C10120.8 (3)
H2B—N2—H2C109.3C12—C11—H11A119.6
C7—C2—C3117.4 (3)C10—C11—H11A119.6
C7—C2—C1122.1 (2)O3—C5—C6116.0 (3)
C3—C2—C1120.5 (3)O3—C5—C4124.7 (3)
O2—C1—O1122.8 (3)C6—C5—C4119.3 (3)
O2—C1—C2118.7 (2)O6—C13—C14125.1 (3)
O1—C1—C2118.5 (2)O6—C13—C12115.0 (3)
O5—C9—O4123.1 (3)C14—C13—C12119.9 (3)
O5—C9—C10118.9 (3)C11—C12—C13120.0 (3)
O4—C9—C10118.1 (3)C11—C12—H12A120.0
C5—O3—C8117.9 (2)C13—C12—H12A120.0
C6—C7—C2122.0 (3)O3—C8—H8A109.5
C6—C7—H7A119.0O3—C8—H8B109.5
C2—C7—H7A119.0H8A—C8—H8B109.5
N1—C18—C17110.7 (2)O3—C8—H8C109.5
N1—C18—C19110.9 (2)H8A—C8—H8C109.5
C17—C18—C19114.9 (2)H8B—C8—H8C109.5
N1—C18—H18A106.7C18—C17—H17A109.5
C17—C18—H18A106.7C18—C17—H17B109.5
C19—C18—H18A106.7H17A—C17—H17B109.5
C13—O6—C16119.1 (3)C18—C17—H17C109.5
C7—C6—C5120.0 (3)H17A—C17—H17C109.5
C7—C6—H6A120.0H17B—C17—H17C109.5
C5—C6—H6A120.0O6—C16—H16A109.5
C15—C14—C13119.3 (3)O6—C16—H16B109.5
C15—C14—H14A120.4H16A—C16—H16B109.5
C13—C14—H14A120.4O6—C16—H16C109.5
C4—C3—C2121.6 (3)H16A—C16—H16C109.5
C4—C3—H3A119.2H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.901.822.696 (3)162
N1—H1B···O10.901.922.791 (3)162
N1—H1C···O1ii0.901.892.777 (3)167
N2—H2A···O5iii0.901.822.718 (3)173
N2—H2B···O4iv0.902.032.917 (3)170
N2—H2C···O2ii0.901.812.703 (3)1670
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC3H12N22+·2C8H7O3
Mr378.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.847 (3), 11.296 (2), 12.893 (3)
β (°) 92.38 (3)
V3)2014.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20478, 4611, 2264
Rint0.116
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.194, 1.03
No. of reflections4611
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.901.822.696 (3)162
N1—H1B···O10.901.922.791 (3)162
N1—H1C···O1ii0.901.892.777 (3)167
N2—H2A···O5iii0.901.822.718 (3)173
N2—H2B···O4iv0.902.032.917 (3)170
N2—H2C···O2ii0.901.812.703 (3)1670
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+2, y, z+2.
 

Acknowledgements

This work was supported by the start-up fund of Anyang Institute of Technology, China.

References

First citationAlmarsson, O. & Zaworotko, M. J. (2004). Chem. Commun. 17, 1889–1896.  Web of Science CrossRef Google Scholar
First citationBlagden, N., Berry, D. J., Parkin, A., Javed, H., Ibrahim, A., Gavan, P. T., De Matos, L. L. & Seaton, C. C. (2008). New J. Chem. 32, 1659–1672.  Web of Science CSD CrossRef CAS Google Scholar
First citationKapildev, K. A., Nitin, G. T. & Raj, S. (2011). Mol. Pharm. 8, 982–989.  Web of Science PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishweshwar, P., McMahon, J. A., Bis, J. A. & Zaworotko, M. J. (2006). J. Pharm. Sci. 95, 499–516.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds