organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Dide­hydro-5-hy­dr­oxy-1,2-O-iso­propyl­­idene-5-C-nitro­meth­yl-α-D-gluco­furan­ose

aNew Drug Reseach & Development Center, Zhengzhou Univresity, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: zqr409@126.com

(Received 17 May 2011; accepted 7 June 2011; online 18 June 2011)

The title compound, C10H15NO7, consists of one methyl­enedi­oxy ring and two fused tetra­hydro­furan rings. The three fused rings exhibit cis arrangements at the ring junctions. One O atom of a tetra­hydro­furan ring and the H atoms bound to the neighboring C atoms are disordered over two orientations with site-occupancy factors of 0.69 (1) and 0.31 (1). intra­molecular O—H⋯O and C—H⋯O inter­actions stabilize the mol­ecular conformation. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For the synthesis of aza­sugars, see: Choi et al. (1991[Choi, W. B., Wilson, L. J., Yeola, S., Liotta, D. C. & Schinazi, R. F. (1991). J. Am. Chem. Soc. 113, 9377-9379.]); Kvaernø et al. (2001[Kvaernø, L., Wightman, R. H. & Wengel, J. (2001). J. Org. Chem. A66, 5106-5112.]). For the Henry reaction used to obtain the title compound, see: Saito et al. (2002[Saito, Y., Zevaco, T. A. & Agrofoglio, L. A. (2002). Tetrahedron, 58, 9593-9603.]). For research on carbohydrates and aza­sugars, see: Liu et al. (2004[Liu, F.-W., Liu, H.-M., Ke, Y. & Zhang, J.-Y. (2004). Carbohydr. Res. 339, 2651-2656.]); Ke et al. (2009[Ke, Y., Ji, X.-M., Zhu, Y. & Liu, H.-M. (2009). Chin. J. Struct. Chem. 3, 291-294.]); Zhang et al. (2011[Zhang, Q., Ke, Y., Cheng, W., Li, P. & Liu, H. (2011). Acta Cryst. E67, o1402.]). For a similar structure, see: Zhang & Yang (2010[Zhang, J.-Y. & Yang, J. (2010). Acta Cryst. E66, o1704.]).

[Scheme 1]

Experimental

Crystal data
  • C10H15NO7

  • Mr = 261.23

  • Orthorhombic, P 21 21 21

  • a = 5.63290 (13) Å

  • b = 8.36405 (15) Å

  • c = 25.4014 (5) Å

  • V = 1196.76 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.07 mm−1

  • T = 291 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.783, Tmax = 0.814

  • 7427 measured reflections

  • 2249 independent reflections

  • 2161 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.165

  • S = 1.08

  • 2249 reflections

  • 174 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O4 0.86 (6) 2.13 (6) 2.696 (3) 123 (5)
O5—H5⋯O3i 0.86 (6) 2.24 (6) 2.703 (3) 114 (4)
C1—H1⋯O5ii 0.98 2.48 3.371 (3) 152
C4—H4⋯O6 0.98 2.39 3.074 (4) 126
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Azasugars containing some novel glycosyls such as bicyclo-glycosyl and heterocycle glycosyl, the synthesis of which being known for many years (Choi et al., 1991; Kvaernø et al., 2001), have attracted a growing interest due to their potent antiviral activity. As a contribution to the research for carbohydrate and azasugars compounds (Liu et al., 2004; Ke et al., 2009), we report here the synthesis and X-ray crystal structure of the title compound, an intermediate of bicyclo-glycosyl. The title compound, which shows a similar structure to the one previously reported by Zhang & Yang (2010), was enantiomerically synthesized at room tempeature by means of the Henry reaction (Saito et al., 2002).

The title compound, C10H15NO7, consists of one methylenedioxy ring and two fused tetrahydrofuran rings. The three fused rings exhibit cis arrangements at the ring junctions and give two V-shaped molecules. One O atom of a tetrahydrofuran ring moiety is disordered over two positions with site-occupancy factors of 0.69 (1) and 0.31 (1), the H atoms bound to the neighboring C atoms were disordered as well. The bond angles O2—C7—O1 and C8—C7—C9 around the isopropylidene are 105.6 (2) and 113.2 (3)°, which are almost equal to the corresponding bond angles reported by Zhang & Yang (2010). The bond angle O5—C5—C10 containing simultaneously hydroxy and nitromethylene is 108.3 (2)°. The torsion angles C2—C3—C4—C5, O3—C3—C4—O4, O4—C1—C2—O2 and O1—C1—C2—C3 are -140.4 (3), 99.7 (4), 98.6 (3) and -135.2 (3) °, respectively.

In the crystal structure, some intra- and intermolecular O—H···O and C—H···O interactions exist to stabilize the molecular conformation and link the molecules into a three-dimensional network.

Related literature top

For the synthesis of azasugars, see: Choi et al. (1991); Kvaernø et al. (2001). For the Henry reaction used to obtain the title compound, see: Saito et al. (2002). For research on carbohydrates and azasugars, see: Liu et al. (2004); Ke et al. (2009); Zhang et al. (2011). For a similar structure, see: Zhang & Yang (2010).

Experimental top

The title compound was synthesized from 3,6-didehydro-1,2-O-isopropylidene-5-carbonyl-α-D-glucofuranose with Henry reaction as described previously by Saito et al. (2002) whose starting material was D-glucose. To a solution of the starting material (2.4 g, 9.2 mmol) in tetrahydrofuran (30 ml) was added CH3NO2 (0.82 ml) and potassium fluoride (0.84 g) under ice bath. The mixture was stirred at room temperature for 12 h. After the material was consumed, the reaction mixture was filtered to remove the KF. The filtrate was concentrated in vacuo to yield the residue, which was recrystalized in CH3OH to obtain the title compound as a white solid. Crystals suitable for X-ray analysis were grown by slow evaporation from methanol at room temperature for two weeks.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.96 Å and Uiso(H) =1.5Ueq(C) for methyl H atoms, with C—H = 0.97 Å and Uiso(H) =1.2Ueq(C) for methylene H atoms, and with C—H = 0.98 Å and Uiso(H) =1.2Ueq(C) for methine H atoms. The hydroxy H atom was freely refined. In the absence of any significant anomalous scatterers in the molecule, attempts to confirm the absolute structure by refinement of the Flack parameter in the presence of 896 sets of Friedel equivalents led to an inconclusive value of 0.0 (3). Therefore, the Friedel pairs were merged before the final refinement and the absolute configuration was assigned to correspond with that of the known chiral centres in the precursor molecule, which remained unchanged during the synthesis of the title compound.

One O atom of a tetrahydrofuran ring moiety is disordered over two positions with site-occupancy factors of 0.69 (1) and 0.31 (1), the H atoms bound to the neighboring atoms C3 and C6 were disordered as well over two positions.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
3,6-Didehydro-5-hydroxy-1,2-O-isopropylidene-5-C-nitromethyl- α-D-glucofuranose top
Crystal data top
C10H15NO7Dx = 1.450 Mg m3
Mr = 261.23Melting point = 392–394 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 5453 reflections
a = 5.63290 (13) Åθ = 3.5–70.0°
b = 8.36405 (15) ŵ = 1.07 mm1
c = 25.4014 (5) ÅT = 291 K
V = 1196.76 (4) Å3Block, white
Z = 40.24 × 0.22 × 0.20 mm
F(000) = 552
Data collection top
Bruker SMART
diffractometer
2249 independent reflections
Radiation source: Enhance (Cu) X-ray Source2161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0 pixels mm-1θmax = 70.2°, θmin = 3.5°
ω scansh = 64
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 910
Tmin = 0.783, Tmax = 0.814l = 2930
7427 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1069P)2 + 0.3286P]
where P = (Fo2 + 2Fc2)/3
2249 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.59 e Å3
8 restraintsΔρmin = 0.43 e Å3
Crystal data top
C10H15NO7V = 1196.76 (4) Å3
Mr = 261.23Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.63290 (13) ŵ = 1.07 mm1
b = 8.36405 (15) ÅT = 291 K
c = 25.4014 (5) Å0.24 × 0.22 × 0.20 mm
Data collection top
Bruker SMART
diffractometer
2249 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2161 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.814Rint = 0.021
7427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0538 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.59 e Å3
2249 reflectionsΔρmin = 0.43 e Å3
174 parameters
Special details top

Experimental. Melting point: 119–121 °C; Rf = 0.67 (CHCl3/EtOAc, 7:3); 1H NMR (400 MHz, CDCl3) σ: 5.98 (d, J = 3.4 Hz, 1H), 4.81 (d, J = 4.3 Hz, 1H), 4.68 (d, J = 3.4 Hz, 1H), 4.60 (dd, J = 8.3, 4.0 Hz, 2H), 4.52 (d, J = 12.3 Hz, 1H), 3.83 (d, J = 10.0 Hz, 1H), 3.75 (d, J = 10.0 Hz, 1H), 3.36 (s, 1H), 1.51 (s, 3H), 1.36 (s, 3H); 13C NMR (100 MHz, CDCl3) σ: 113.60, 107.18, 85.35, 85.08, 83.80, 78.62, 78.42, 74.89, 27.49, 26.77.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8215 (5)0.0074 (2)0.86303 (8)0.0635 (6)
O20.5738 (5)0.1567 (3)0.81809 (9)0.0693 (7)
O30.4254 (5)0.4145 (8)0.92867 (15)0.0833 (16)0.695 (10)
O3A0.4631 (15)0.3468 (10)0.93694 (15)0.0833 (16)0.305 (10)
O40.8877 (4)0.2199 (2)0.91272 (11)0.0726 (8)
O51.0074 (4)0.4587 (3)0.97889 (8)0.0526 (5)
H51.070 (10)0.374 (6)0.966 (2)0.113 (19)*
O61.1140 (5)0.6590 (3)0.86098 (10)0.0729 (7)
O71.2025 (5)0.7827 (3)0.93199 (11)0.0735 (7)
N11.0673 (5)0.7059 (3)0.90501 (9)0.0487 (6)
C10.7251 (6)0.1003 (3)0.89903 (10)0.0530 (7)
H10.66930.04400.93050.064*
C20.5231 (5)0.1803 (4)0.87177 (13)0.0598 (8)
H20.36810.13750.88220.072*
C30.5524 (6)0.3547 (5)0.88496 (14)0.0712 (11)
H3A0.51200.41860.85390.085*0.695 (10)
H3B0.47940.43250.86110.085*0.305 (10)
C40.8110 (5)0.3724 (3)0.89597 (11)0.0450 (6)
H40.90010.41200.86550.054*
C50.8201 (4)0.4884 (3)0.94342 (9)0.0378 (5)
C60.5819 (5)0.4568 (4)0.96985 (11)0.0517 (6)
H6A0.59530.37040.99520.062*0.695 (10)
H6B0.52590.55180.98790.062*0.695 (10)
H6C0.60480.41201.00470.062*0.305 (10)
H6D0.49150.55500.97300.062*0.305 (10)
C70.7269 (6)0.0235 (3)0.81191 (10)0.0488 (7)
C80.9245 (10)0.0693 (8)0.7760 (2)0.1050 (16)
H8A1.04280.01330.77610.157*
H8B0.99400.16770.78790.157*
H8C0.86400.08300.74100.157*
C90.5948 (9)0.1217 (5)0.79390 (18)0.0830 (12)
H9A0.45670.13660.81550.125*
H9B0.69580.21380.79670.125*
H9C0.54710.10800.75790.125*
C100.8305 (5)0.6646 (3)0.92708 (11)0.0437 (6)
H10A0.70900.68560.90090.052*
H10B0.79850.73150.95750.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0991 (17)0.0435 (10)0.0480 (10)0.0213 (12)0.0142 (12)0.0086 (8)
O20.0906 (17)0.0641 (13)0.0533 (11)0.0267 (12)0.0249 (12)0.0142 (10)
O30.0301 (13)0.080 (4)0.140 (3)0.0168 (15)0.0027 (14)0.075 (3)
O3A0.0301 (13)0.080 (4)0.140 (3)0.0168 (15)0.0027 (14)0.075 (3)
O40.0591 (13)0.0422 (10)0.117 (2)0.0172 (10)0.0355 (13)0.0200 (12)
O50.0480 (10)0.0557 (12)0.0542 (11)0.0076 (9)0.0076 (9)0.0032 (9)
O60.0897 (17)0.0640 (14)0.0650 (13)0.0128 (13)0.0300 (13)0.0073 (11)
O70.0693 (13)0.0674 (13)0.0836 (16)0.0247 (13)0.0016 (13)0.0072 (12)
N10.0578 (14)0.0353 (10)0.0529 (12)0.0020 (10)0.0079 (11)0.0004 (9)
C10.084 (2)0.0345 (12)0.0409 (13)0.0002 (13)0.0035 (14)0.0024 (9)
C20.0429 (14)0.0694 (19)0.0670 (18)0.0064 (14)0.0001 (13)0.0269 (15)
C30.0604 (19)0.073 (2)0.080 (2)0.0310 (17)0.0269 (17)0.0296 (18)
C40.0550 (15)0.0337 (11)0.0463 (13)0.0003 (11)0.0054 (12)0.0045 (10)
C50.0377 (11)0.0358 (11)0.0398 (11)0.0029 (10)0.0024 (10)0.0019 (9)
C60.0494 (14)0.0501 (15)0.0556 (14)0.0030 (12)0.0124 (12)0.0011 (12)
C70.0614 (16)0.0471 (14)0.0380 (12)0.0021 (12)0.0008 (12)0.0023 (10)
C80.100 (3)0.133 (4)0.082 (3)0.014 (3)0.033 (3)0.005 (3)
C90.096 (3)0.074 (2)0.079 (2)0.011 (2)0.014 (2)0.0243 (19)
C100.0494 (13)0.0330 (11)0.0487 (12)0.0056 (10)0.0050 (12)0.0011 (10)
Geometric parameters (Å, º) top
O1—C11.394 (3)C3—H3A0.9800
O1—C71.427 (3)C3—H3B0.9800
O2—C21.407 (4)C4—C51.548 (3)
O2—C71.418 (4)C4—H40.9800
O3—C31.412 (3)C5—C61.524 (3)
O3—C61.413 (3)C5—C101.532 (3)
O3A—C61.412 (3)C6—H6A0.9700
O3A—C31.414 (3)C6—H6B0.9700
O4—C11.400 (4)C6—H6C0.9700
O4—C41.413 (3)C6—H6D0.9700
O5—C51.409 (3)C7—C81.488 (6)
O5—H50.86 (6)C7—C91.497 (5)
O6—N11.214 (3)C8—H8A0.9600
O7—N11.209 (3)C8—H8B0.9600
N1—C101.487 (4)C8—H8C0.9600
C1—C21.490 (5)C9—H9A0.9600
C1—H10.9800C9—H9B0.9600
C2—C31.506 (5)C9—H9C0.9600
C2—H20.9800C10—H10A0.9700
C3—C41.491 (4)C10—H10B0.9700
C1—O1—C7109.5 (2)C6—C5—C4101.8 (2)
C2—O2—C7109.9 (2)C10—C5—C4113.1 (2)
C3—O3—C6110.8 (2)O3A—C6—C5105.6 (3)
C6—O3A—C3110.7 (3)O3—C6—C5105.5 (2)
C1—O4—C4111.7 (2)O3A—C6—H6A86.8
C5—O5—H5102 (4)O3—C6—H6A110.6
O7—N1—O6123.9 (3)C5—C6—H6A110.6
O7—N1—C10118.3 (2)O3A—C6—H6B131.3
O6—N1—C10117.8 (2)O3—C6—H6B110.6
O1—C1—O4111.7 (3)C5—C6—H6B110.6
O1—C1—C2106.4 (2)H6A—C6—H6B108.8
O4—C1—C2107.1 (2)O3A—C6—H6C110.6
O1—C1—H1110.5O3—C6—H6C131.4
O4—C1—H1110.5C5—C6—H6C110.6
C2—C1—H1110.5H6B—C6—H6C85.9
O2—C2—C1103.5 (2)O3A—C6—H6D110.6
O2—C2—C3109.2 (3)O3—C6—H6D86.9
C1—C2—C3104.4 (2)C5—C6—H6D110.6
O2—C2—H2113.0H6A—C6—H6D128.1
C1—C2—H2113.0H6C—C6—H6D108.7
C3—C2—H2113.0O2—C7—O1105.6 (2)
O3—C3—C4108.2 (2)O2—C7—C8108.7 (3)
O3A—C3—C4100.2 (4)O1—C7—C8108.9 (3)
O3—C3—C2117.5 (4)O2—C7—C9111.7 (3)
O3A—C3—C297.1 (4)O1—C7—C9108.5 (3)
C4—C3—C2104.2 (2)C8—C7—C9113.2 (3)
O3—C3—H3A108.9C7—C8—H8A109.5
O3A—C3—H3A134.0C7—C8—H8B109.5
C4—C3—H3A108.9H8A—C8—H8B109.5
C2—C3—H3A108.9C7—C8—H8C109.5
O3—C3—H3B92.3H8A—C8—H8C109.5
O3A—C3—H3B117.4H8B—C8—H8C109.5
C4—C3—H3B117.4C7—C9—H9A109.5
C2—C3—H3B117.4C7—C9—H9B109.5
O4—C4—C3105.4 (3)H9A—C9—H9B109.5
O4—C4—C5108.7 (2)C7—C9—H9C109.5
C3—C4—C5103.9 (2)H9A—C9—H9C109.5
O4—C4—H4112.7H9B—C9—H9C109.5
C3—C4—H4112.7N1—C10—C5111.1 (2)
C5—C4—H4112.7N1—C10—H10A109.4
O5—C5—C6110.3 (2)C5—C10—H10A109.4
O5—C5—C10108.3 (2)N1—C10—H10B109.4
C6—C5—C10108.7 (2)C5—C10—H10B109.4
O5—C5—C4114.3 (2)H10A—C10—H10B108.0
C7—O1—C1—O4104.4 (3)C2—C3—C4—C5140.4 (3)
C7—O1—C1—C212.2 (3)O4—C4—C5—O534.3 (3)
C4—O4—C1—O1115.3 (3)C3—C4—C5—O5146.2 (3)
C4—O4—C1—C20.9 (4)O4—C4—C5—C684.7 (3)
C7—O2—C2—C122.4 (3)C3—C4—C5—C627.2 (3)
C7—O2—C2—C3133.2 (3)O4—C4—C5—C10158.9 (2)
O1—C1—C2—O220.9 (3)C3—C4—C5—C1089.2 (3)
O4—C1—C2—O298.6 (3)C3—O3A—C6—O370.2 (3)
O1—C1—C2—C3135.2 (3)C3—O3A—C6—C523.2 (8)
O4—C1—C2—C315.6 (3)C3—O3—C6—O3A70.5 (3)
C6—O3—C3—O3A70.3 (3)C3—O3—C6—C523.6 (6)
C6—O3—C3—C45.4 (6)O5—C5—C6—O3A125.5 (5)
C6—O3—C3—C2112.1 (4)C10—C5—C6—O3A115.9 (5)
C6—O3A—C3—O370.3 (3)C4—C5—C6—O3A3.8 (5)
C6—O3A—C3—C440.3 (8)O5—C5—C6—O3152.7 (3)
C6—O3A—C3—C2146.2 (7)C10—C5—C6—O388.7 (4)
O2—C2—C3—O3155.5 (3)C4—C5—C6—O331.0 (4)
C1—C2—C3—O394.4 (4)C2—O2—C7—O115.6 (3)
O2—C2—C3—O3A172.8 (5)C2—O2—C7—C8132.3 (3)
C1—C2—C3—O3A77.1 (5)C2—O2—C7—C9102.1 (3)
O2—C2—C3—C484.8 (3)C1—O1—C7—O21.4 (3)
C1—C2—C3—C425.3 (4)C1—O1—C7—C8118.0 (4)
C1—O4—C4—C317.3 (3)C1—O1—C7—C9118.4 (3)
C1—O4—C4—C5128.2 (3)O7—N1—C10—C5104.9 (3)
O3—C3—C4—O499.7 (4)O6—N1—C10—C574.5 (3)
O3A—C3—C4—O474.0 (4)O5—C5—C10—N155.5 (3)
C2—C3—C4—O426.1 (3)C6—C5—C10—N1175.3 (2)
O3—C3—C4—C514.6 (5)C4—C5—C10—N172.4 (3)
O3A—C3—C4—C540.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.86 (6)2.13 (6)2.696 (3)123 (5)
O5—H5···O3i0.86 (6)2.24 (6)2.703 (3)114 (4)
C1—H1···O5ii0.982.483.371 (3)152
C4—H4···O60.982.393.074 (4)126
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC10H15NO7
Mr261.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)5.63290 (13), 8.36405 (15), 25.4014 (5)
V3)1196.76 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.07
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.783, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
7427, 2249, 2161
Rint0.021
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.165, 1.08
No. of reflections2249
No. of parameters174
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.43

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.86 (6)2.13 (6)2.696 (3)123 (5)
O5—H5···O3i0.86 (6)2.24 (6)2.703 (3)114 (4)
C1—H1···O5ii0.982.483.371 (3)152
C4—H4···O60.982.393.074 (4)126
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+2.
 

Acknowledgements

We gratefully acknowledge financial support by the National Natural Science Foundation of China (grant No. 20572103).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, W. B., Wilson, L. J., Yeola, S., Liotta, D. C. & Schinazi, R. F. (1991). J. Am. Chem. Soc. 113, 9377–9379.  CrossRef CAS Google Scholar
First citationKe, Y., Ji, X.-M., Zhu, Y. & Liu, H.-M. (2009). Chin. J. Struct. Chem. 3, 291–294.  Google Scholar
First citationKvaernø, L., Wightman, R. H. & Wengel, J. (2001). J. Org. Chem. A66, 5106–5112.  Google Scholar
First citationLiu, F.-W., Liu, H.-M., Ke, Y. & Zhang, J.-Y. (2004). Carbohydr. Res. 339, 2651–2656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaito, Y., Zevaco, T. A. & Agrofoglio, L. A. (2002). Tetrahedron, 58, 9593–9603.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Ke, Y., Cheng, W., Li, P. & Liu, H. (2011). Acta Cryst. E67, o1402.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-Y. & Yang, J. (2010). Acta Cryst. E66, o1704.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds