organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(5-Bromo-2-hy­dr­oxy­phen­yl)ethyl­­idene]-4-nitro­benzohydrazide

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an,Shaanxi, People's Republic of China
*Correspondence e-mail: wllily315668256@yahoo.com.cn

(Received 25 May 2011; accepted 16 June 2011; online 25 June 2011)

The title compound, C15H12BrN3O4, displays a trans conformation with respect to the C=N double bond. The central atoms around the C=N double bond are not coplanar, in contrast to the aromatic rings, which exhibit a dihedral angle of 1.80 (4)° between their mean planes. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, mol­ecules are connected via inter­molecular N—H⋯O hydrogen bonding into chains along the a axis.

Related literature

For the coordination properties of aroylhydrazones, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]); Zhang et al. (2011[Zhang, J.-M., Wang, L., Liu, J., Li, Y.-C. & Li, H.-J. (2011). Acta Cryst. E67, m537.]); Zheng et al. (2008[Zheng, C.-Z., Ji, C.-Y., Chang, X.-L. & Zhang, L. (2008). Acta Cryst. E64, o2487.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrN3O4

  • Mr = 378.19

  • Orthorhombic, P n a 21

  • a = 40.381 (13) Å

  • b = 5.0598 (16) Å

  • c = 7.168 (2) Å

  • V = 1464.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 298 K

  • 0.35 × 0.23 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.441, Tmax = 0.689

  • 6753 measured reflections

  • 2520 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.157

  • S = 0.95

  • 2520 reflections

  • 210 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.75 e Å−3

  • Absolute structure: Flack (1983), 1075 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.23 2.981 (6) 146
O1—H1⋯N1 0.82 1.81 2.531 (7) 145
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Zhang et al., 2011; Zheng et al., 2008; Ali et al., 2004) and their biological activity (Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound, C15H12N3O4Br, was synthesized and its crystal structure is reported here.

The title compound, C15H12N3O4Br, displays a trans conformation with respect to the C=N double bond (Fig. 1). The central atoms around the C=N double bond are not coplanar since the dihedral angle C7—N1—N2—C9 is 154.7 (5)° in contrast to the aromatic rings which exhibit a dihedral angle of 1.80 (4)° between their mean planes. In the crystal structure, one intramolecular O—H···N hydrogen bond occurs (Table 1). The molecules are connected via intermolecular N—H···O into one-dimensional linear chains along the a axis (Table 1; Fig. 2).

Related literature top

For the coordination properties of aroylhydrazones, see: Ali et al. (2004); Carcelli et al. (1995); Zhang et al. (2011); Zheng et al. (2008) .

Experimental top

Ethyl 4-nitrobenzoate (9.76 g, 0.05 mol) was dissolved in ethanol (40 ml) at room temperature and heated at 363 K, followed by the addition of hydrazine hydrate (2.50 g, 0.05 mol). Subsequently, the mixture was refluxed for 10 h, and then cooled to room temperature. The crystals were precipitated and collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to give compound of 4-nitrobenzhydrazide. 4-Nitrobenzhydrazide (4.53 g, 0.025 mol) was dissolved in ethanol (20 ml) at room temperature and heated at 363 K, followed by the addition of 5-bromo-2-hydroxyphenyl ethyl ketone (5.38 g, 0.025 mol). Subsequently, the mixture was refluxed for 9 h, and then cooled to room temperature. The crystals were precipitated and collected by filtration. The product was recrystallized from ethanol and dried under reduced pressure to the title compound.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with CH (methyl) = 0.96 Å, C—H (aromatic) = 0.93 Å, O—H = 0.82 Å, N—H = 0.86 Å and with Uiso(H) = 1.5Ueq(Cmethyl, O) and 1.2Ueq(Caromatic, N).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Dashed lines show intra- and intermolecular hydrogen bonds.
N'-[(E)-1-(5-Bromo-2-hydroxyphenyl)ethylidene]-4- nitrobenzohydrazide top
Crystal data top
C15H12BrN3O4F(000) = 760
Mr = 378.19Dx = 1.715 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2077 reflections
a = 40.381 (13) Åθ = 3.0–23.4°
b = 5.0598 (16) ŵ = 2.83 mm1
c = 7.168 (2) ÅT = 298 K
V = 1464.5 (8) Å3Block, red
Z = 40.35 × 0.23 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2520 independent reflections
Radiation source: fine-focus sealed tube2074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3948
Tmin = 0.441, Tmax = 0.689k = 66
6753 measured reflectionsl = 78
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.120P)2 + 0.2524P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.002
S = 0.95Δρmax = 0.95 e Å3
2520 reflectionsΔρmin = 0.75 e Å3
210 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
1 restraintExtinction coefficient: 0.0113 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1075 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
C15H12BrN3O4V = 1464.5 (8) Å3
Mr = 378.19Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 40.381 (13) ŵ = 2.83 mm1
b = 5.0598 (16) ÅT = 298 K
c = 7.168 (2) Å0.35 × 0.23 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2074 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.689Rint = 0.040
6753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.157Δρmax = 0.95 e Å3
S = 0.95Δρmin = 0.75 e Å3
2520 reflectionsAbsolute structure: Flack (1983), 1075 Friedel pairs
210 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.748669 (14)0.63795 (13)0.8107 (3)0.0527 (3)
N10.63083 (12)0.3604 (9)0.2325 (8)0.0407 (12)
N20.61516 (12)0.4290 (9)0.0655 (7)0.0398 (12)
H2A0.61650.58550.01940.048*
N30.53035 (13)0.4393 (12)0.7014 (9)0.0537 (14)
O10.63214 (10)0.0383 (8)0.5025 (7)0.0454 (10)
H10.62460.10780.40840.068*
O20.59928 (11)0.0029 (8)0.0369 (7)0.0534 (12)
O30.50841 (18)0.2902 (13)0.7491 (10)0.094 (2)
O40.53936 (16)0.6248 (14)0.7978 (10)0.087 (2)
C10.71150 (13)0.4542 (11)0.7103 (8)0.0383 (13)
C20.69852 (14)0.2403 (12)0.8090 (10)0.0460 (13)
H20.70780.18730.92190.055*
C30.67161 (18)0.1098 (12)0.7345 (10)0.0477 (16)
H30.66250.03100.80000.057*
C40.65783 (15)0.1816 (11)0.5655 (9)0.0363 (13)
C50.67081 (14)0.4039 (10)0.4651 (8)0.0330 (12)
C60.69784 (13)0.5350 (10)0.5410 (8)0.0352 (12)
H60.70700.67840.47810.042*
C70.65665 (13)0.4916 (10)0.2846 (7)0.0329 (12)
C80.67260 (16)0.7035 (12)0.1733 (9)0.0434 (15)
H8A0.66570.68950.04550.065*
H8B0.69620.68530.18040.065*
H8C0.66620.87280.22180.065*
C90.59767 (14)0.2338 (11)0.0194 (9)0.0405 (14)
C100.57928 (12)0.3074 (10)0.1896 (10)0.0353 (11)
C110.55293 (16)0.1454 (12)0.2431 (10)0.0451 (17)
H110.54650.00600.16670.054*
C120.53649 (15)0.1907 (12)0.4076 (10)0.0462 (15)
H120.51860.08560.44250.055*
C130.54701 (15)0.3955 (11)0.5200 (9)0.0411 (14)
C140.57239 (14)0.5633 (11)0.4717 (9)0.0410 (13)
H140.57860.70220.54920.049*
C150.58848 (15)0.5181 (11)0.3029 (9)0.0432 (14)
H150.60550.62980.26550.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0513 (4)0.0578 (4)0.0490 (4)0.0046 (3)0.0137 (3)0.0030 (5)
N10.050 (3)0.036 (3)0.035 (3)0.004 (2)0.007 (2)0.000 (2)
N20.053 (3)0.032 (2)0.034 (3)0.004 (2)0.011 (2)0.002 (2)
N30.055 (3)0.057 (3)0.050 (4)0.001 (2)0.015 (3)0.001 (3)
O10.060 (3)0.030 (2)0.046 (3)0.0088 (19)0.002 (2)0.013 (2)
O20.077 (3)0.030 (2)0.054 (3)0.003 (2)0.018 (2)0.001 (2)
O30.112 (4)0.084 (4)0.086 (6)0.029 (4)0.056 (4)0.015 (3)
O40.079 (4)0.115 (5)0.067 (4)0.022 (3)0.021 (3)0.032 (4)
C10.046 (3)0.039 (3)0.031 (3)0.007 (2)0.004 (2)0.010 (3)
C20.066 (3)0.047 (3)0.025 (3)0.011 (3)0.004 (3)0.013 (3)
C30.072 (4)0.038 (3)0.033 (3)0.005 (3)0.006 (3)0.012 (3)
C40.044 (3)0.029 (3)0.035 (3)0.005 (2)0.005 (2)0.001 (2)
C50.037 (3)0.028 (3)0.034 (3)0.005 (2)0.006 (2)0.004 (2)
C60.044 (3)0.028 (3)0.034 (3)0.000 (2)0.002 (2)0.006 (2)
C70.044 (3)0.023 (2)0.031 (3)0.003 (2)0.001 (2)0.002 (2)
C80.056 (4)0.041 (3)0.033 (4)0.004 (3)0.005 (3)0.005 (3)
C90.039 (3)0.034 (3)0.048 (4)0.000 (3)0.000 (3)0.009 (3)
C100.037 (2)0.030 (2)0.039 (3)0.0031 (19)0.005 (3)0.009 (3)
C110.045 (3)0.035 (3)0.055 (5)0.004 (2)0.001 (3)0.004 (3)
C120.044 (3)0.041 (3)0.053 (4)0.007 (3)0.009 (3)0.002 (3)
C130.040 (3)0.044 (3)0.040 (4)0.003 (2)0.007 (2)0.012 (3)
C140.048 (3)0.036 (3)0.039 (4)0.002 (3)0.002 (3)0.002 (3)
C150.047 (3)0.036 (3)0.047 (4)0.004 (3)0.003 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C11.906 (6)C5—C61.388 (8)
N1—C71.291 (7)C5—C71.483 (8)
N1—N21.397 (7)C6—H60.9300
N2—C91.358 (7)C7—C81.484 (8)
N2—H2A0.8600C8—H8A0.9600
N3—O31.213 (8)C8—H8B0.9600
N3—O41.221 (8)C8—H8C0.9600
N3—C131.480 (8)C9—C101.476 (9)
O1—C41.344 (8)C10—C151.391 (9)
O1—H10.8200C10—C111.396 (8)
O2—C91.238 (7)C11—C121.373 (10)
C1—C61.394 (8)C11—H110.9300
C1—C21.395 (9)C12—C131.380 (9)
C2—C31.380 (10)C12—H120.9300
C2—H20.9300C13—C141.375 (8)
C3—C41.381 (10)C14—C151.393 (9)
C3—H30.9300C14—H140.9300
C4—C51.435 (8)C15—H150.9300
C7—N1—N2119.1 (5)C5—C7—C8121.2 (5)
C9—N2—N1116.0 (5)C7—C8—H8A109.5
C9—N2—H2A122.0C7—C8—H8B109.5
N1—N2—H2A122.0H8A—C8—H8B109.5
O3—N3—O4122.4 (7)C7—C8—H8C109.5
O3—N3—C13119.1 (6)H8A—C8—H8C109.5
O4—N3—C13118.5 (5)H8B—C8—H8C109.5
C4—O1—H1109.5O2—C9—N2120.8 (6)
C6—C1—C2121.3 (5)O2—C9—C10122.3 (5)
C6—C1—Br1119.8 (4)N2—C9—C10116.7 (5)
C2—C1—Br1118.9 (5)C15—C10—C11119.6 (6)
C3—C2—C1118.1 (6)C15—C10—C9122.8 (5)
C3—C2—H2121.0C11—C10—C9117.5 (5)
C1—C2—H2121.0C12—C11—C10120.4 (6)
C2—C3—C4122.1 (6)C12—C11—H11119.8
C2—C3—H3119.0C10—C11—H11119.8
C4—C3—H3119.0C11—C12—C13118.6 (6)
O1—C4—C3117.6 (6)C11—C12—H12120.7
O1—C4—C5122.4 (5)C13—C12—H12120.7
C3—C4—C5119.9 (6)C14—C13—C12123.1 (6)
C6—C5—C4117.7 (5)C14—C13—N3117.8 (6)
C6—C5—C7120.1 (5)C12—C13—N3119.0 (5)
C4—C5—C7122.1 (5)C13—C14—C15117.7 (6)
C5—C6—C1120.8 (5)C13—C14—H14121.1
C5—C6—H6119.6C15—C14—H14121.1
C1—C6—H6119.6C10—C15—C14120.6 (5)
N1—C7—C5114.2 (5)C10—C15—H15119.7
N1—C7—C8124.5 (5)C14—C15—H15119.7
C7—N1—N2—C9154.7 (5)N1—N2—C9—O28.8 (8)
C6—C1—C2—C30.1 (9)N1—N2—C9—C10176.3 (5)
Br1—C1—C2—C3179.9 (5)O2—C9—C10—C15149.2 (6)
C1—C2—C3—C41.2 (10)N2—C9—C10—C1525.6 (8)
C2—C3—C4—O1178.5 (6)O2—C9—C10—C1126.5 (8)
C2—C3—C4—C52.2 (9)N2—C9—C10—C11158.7 (5)
O1—C4—C5—C6178.7 (5)C15—C10—C11—C121.0 (9)
C3—C4—C5—C61.9 (8)C9—C10—C11—C12174.9 (5)
O1—C4—C5—C70.2 (8)C10—C11—C12—C131.3 (10)
C3—C4—C5—C7179.2 (5)C11—C12—C13—C142.6 (10)
C4—C5—C6—C10.8 (8)C11—C12—C13—N3177.5 (6)
C7—C5—C6—C1179.8 (5)O3—N3—C13—C14178.3 (7)
C2—C1—C6—C50.1 (8)O4—N3—C13—C141.5 (9)
Br1—C1—C6—C5179.9 (4)O3—N3—C13—C121.8 (10)
N2—N1—C7—C5179.1 (4)O4—N3—C13—C12178.4 (7)
N2—N1—C7—C84.0 (8)C12—C13—C14—C151.5 (9)
C6—C5—C7—N1177.5 (5)N3—C13—C14—C15178.6 (5)
C4—C5—C7—N13.6 (7)C11—C10—C15—C142.2 (9)
C6—C5—C7—C85.5 (8)C9—C10—C15—C14173.5 (5)
C4—C5—C7—C8173.4 (6)C13—C14—C15—C100.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.232.981 (6)146
O1—H1···N10.821.812.531 (7)145
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H12BrN3O4
Mr378.19
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)40.381 (13), 5.0598 (16), 7.168 (2)
V3)1464.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.35 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.441, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
6753, 2520, 2074
Rint0.040
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.157, 0.95
No. of reflections2520
No. of parameters210
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.75
Absolute structureFlack (1983), 1075 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.8602.2272.981 (6)146.26
O1—H1···N10.8201.8132.531 (7)145.31
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of Shaanxi Province, China (2009JM2012) for financial support.

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1996). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-M., Wang, L., Liu, J., Li, Y.-C. & Li, H.-J. (2011). Acta Cryst. E67, m537.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, C.-Z., Ji, C.-Y., Chang, X.-L. & Zhang, L. (2008). Acta Cryst. E64, o2487.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds