# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 2,5-Bis[2-(4-methylphenyl)ethynyl]benzyl methacrylate

### Zhen-Lin Zhang and Hai-Quan Zhang\*

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China Correspondence e-mail: hqzhang@ysu.edu.cn

Received 1 July 2011; accepted 22 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.162; data-to-parameter ratio = 18.5.

In the title bis-tolane derivative,  $C_{29}H_{24}O_2$ , the central benzene ring forms dihedral angles of 29.12 (9) and 26.46 (9)° with the other two benzene rings. The dihedral angle between two terminal benzene rings is 55.58 (8)°.

## **Related literature**

For a related structure and the synthesis, see Zhang *et al.* (2010).



### Experimental

#### Crystal data

 $C_{29}H_{24}O_2$  W 

  $M_r = 404.48$  Z

 Monoclinic,  $P2_1/c$  M

 a = 13.479 (3) Å
  $\mu$  

 b = 10.314 (2) Å
 T

 c = 18.390 (7) Å
 0

  $\beta = 116.06$  (2)°
  $\gamma$ 

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995)  $T_{\rm min} = 0.990, T_{\rm max} = 0.991$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$   $wR(F^2) = 0.162$  S = 1.055232 reflections  $V = 2296.7 (11) Å^{3}$ Z = 4 Mo K\alpha radiation  $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K 0.14 \times 0.12 mm

21783 measured reflections 5232 independent reflections 3322 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.036$ 

283 parameters H-atom parameters constrained 
$$\begin{split} &\Delta\rho_{max}=0.22\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.16\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support by the Qinhuangdao Ministry of Science and Technology of China (201001 A020) and the Hebei Province Science Foundation of China (E2010001182).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2017).

#### References

Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Rigaku Corporation (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Zhang, Z. L., Zhang, L. Y., Shen, Z. H., Chen, X. F., Xing, G. Z., Fan, X. H. & Zhou, Q. F. (2010). J. Polym. Sci. Part A Polym. Chem. 48, 4627–4639.

# supporting information

Acta Cryst. (2011). E67, o2168 [doi:10.1107/S1600536811029631]

# 2,5-Bis[2-(4-methylphenyl)ethynyl]benzyl methacrylate

# Zhen-Lin Zhang and Hai-Quan Zhang

# S1. Comment

High birefringence liquid crystals are useful not only in conventional display devices such as STNLCDs, but also in scattering-type PDLCDs as a reflective LCD, and in spatial light modulators. They are also of interest as componens of LCDs; for example, compensation films for improving the viewing angle, reflectors and polarizers. The bistolane derivatives is very important kind of high birefringence material. We have reported the similar synthesis of the compound in previous paper (Zhang *et al.* 2010). Herein we present the crystal structure of the title compound (see Fig. 1). All bond lengths and angles are in the normal ranges. The three benzene rings of the title compound are not coplanar, and the dihedral angles between the side-benzene rings and the central benzene ring are 29.12 (9)° and 26.46 (9)°, respectively. The dihedral angle between two terminal benzene rings is 55.58 (8)°. The crystal packing is stabilized by Van der Waals' force.

# S2. Experimental

The title compound was prepared according to the literature (Zhang *et al.*, 2010). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a dichloromethane solution at room temperature.

# S3. Refinement

H-atoms were placed in calculated positions and were included in the refinement in the riding model with C—H distances 0.93 Å for aromatic C—H and =CH<sub>2</sub>, 0.97 Å for —CH<sub>2</sub>— and 0.96 Å for —CH<sub>3</sub>.  $U_{iso}(H) = 1.5 U_{eq}(C)$  for methyl H atoms and 1.2  $U_{eq}(C)$  for the rest H atoms.



## Figure 1

The crystal structure of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

## 2,5-Bis[2-(4-methylphenyl)ethynyl]benzyl 2-methylpropenoate

Crystal data

 $C_{29}H_{24}O_2$   $M_r = 404.48$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 13.479 (3) Å b = 10.314 (2) Å c = 18.390 (7) Å  $\beta = 116.06$  (2)° V = 2296.7 (11) Å<sup>3</sup> Z = 4

## Data collection

| Rigaku R-AXIS RAPID                      | 21783 measured reflections                                          |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 5232 independent reflections                                        |
| Radiation source: fine-focus sealed tube | 3322 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                   | $R_{\rm int} = 0.036$                                               |
| ωscans                                   | $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$ |
| Absorption correction: multi-scan        | $h = -17 \rightarrow 17$                                            |
| (ABSCOR; Higashi, 1995)                  | $k = -13 \rightarrow 13$                                            |
| $T_{\min} = 0.990, \ T_{\max} = 0.991$   | <i>l</i> = −23→23                                                   |
|                                          |                                                                     |

F(000) = 856

 $\theta = 3.0 - 27.5^{\circ}$ 

 $\mu = 0.07 \text{ mm}^{-1}$ T = 293 K

Block. colourless

 $0.14 \times 0.14 \times 0.12 \text{ mm}$ 

 $D_{\rm x} = 1.170 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 5232 reflections

## Refinement

| Secondary atom site location: difference Fourier           |
|------------------------------------------------------------|
| map                                                        |
| Hydrogen site location: inferred from                      |
| neighbouring sites                                         |
| H-atom parameters constrained                              |
| $w = 1/[\sigma^2(F_o^2) + (0.090P)^2 + 0.0263P]$           |
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.026$                        |
| $\Delta  ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$      |
| $\Delta \rho_{\rm min} = -0.16 \text{ e}  \text{\AA}^{-3}$ |
|                                                            |

## Special details

Experimental. (See detailed section in the paper)

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|--------------|--------------|-----------------------------|--|
| 01 | 0.46919 (9)  | 0.83960 (11) | 0.94444 (6)  | 0.0577 (3)                  |  |
| O2 | 0.31533 (11) | 0.86679 (15) | 0.95953 (9)  | 0.0855 (4)                  |  |
| C1 | 1.02239 (16) | 0.9345 (3)   | 0.88082 (12) | 0.0898 (7)                  |  |

| H1A  | 1.0037        | 0.9592       | 0.8260       | 0.135*     |
|------|---------------|--------------|--------------|------------|
| H1B  | 1.0873        | 0.8811       | 0.9011       | 0.135*     |
| H1C  | 1.0364        | 1.0109       | 0.9137       | 0.135*     |
| C2   | 0.92826 (13)  | 0.8602 (2)   | 0.88343 (9)  | 0.0622 (5) |
| C3   | 0.85824 (15)  | 0.9179 (2)   | 0.90984 (10) | 0.0683 (5) |
| H3   | 0.8717        | 1.0029       | 0.9285       | 0.082*     |
| C4   | 0.76866 (14)  | 0.8535 (2)   | 0.90948 (11) | 0.0657 (5) |
| H4   | 0.7228        | 0.8952       | 0.9278       | 0.079*     |
| C5   | 0.74624 (12)  | 0.72585 (18) | 0.88170 (9)  | 0.0549 (4) |
| C6   | 0.81733 (13)  | 0.66578 (19) | 0.85598 (9)  | 0.0584 (4) |
| H6   | 0.8044        | 0.5806       | 0.8376       | 0.070*     |
| C7   | 0.90735 (13)  | 0.7320 (2)   | 0.85748 (10) | 0.0620 (5) |
| H7   | 0.9549        | 0.6900       | 0.8408       | 0.074*     |
| C8   | 0.65017 (13)  | 0.66127 (19) | 0.87854 (10) | 0.0607 (4) |
| C9   | 0.56739 (13)  | 0.61534 (18) | 0.87514 (9)  | 0.0579 (4) |
| C10  | 0.46640 (12)  | 0.56551 (16) | 0.87212 (9)  | 0.0503 (4) |
| C11  | 0.42631 (11)  | 0.61130 (15) | 0.92603 (8)  | 0.0487 (4) |
| C12  | 0.32830 (12)  | 0.56368 (16) | 0.92154 (9)  | 0.0518 (4) |
| H12  | 0.3025        | 0.5933       | 0.9578       | 0.062*     |
| C13  | 0.26695 (12)  | 0.47142 (16) | 0.86327 (9)  | 0.0524 (4) |
| C14  | 0.30682 (13)  | 0.42763 (17) | 0.80977 (9)  | 0.0559 (4) |
| H14  | 0.2663        | 0.3673       | 0.7703       | 0.067*     |
| C15  | 0.40513 (13)  | 0.47212 (17) | 0.81438 (9)  | 0.0561 (4) |
| H15  | 0.4315        | 0.4401       | 0.7789       | 0.067*     |
| C16  | 0.16510 (13)  | 0.42429 (17) | 0.85986 (10) | 0.0588 (4) |
| C17  | 0.08020 (13)  | 0.38608 (18) | 0.85793 (10) | 0.0609 (4) |
| C18  | -0.02216 (13) | 0.34409 (17) | 0.85662 (9)  | 0.0545 (4) |
| C19  | -0.03831 (14) | 0.35079 (19) | 0.92580 (10) | 0.0648 (5) |
| H19  | 0.0188        | 0.3789       | 0.9741       | 0.078*     |
| C20  | -0.13764 (15) | 0.3163 (2)   | 0.92386 (10) | 0.0670 (5) |
| H20  | -0.1464       | 0.3212       | 0.9712       | 0.080*     |
| C21  | -0.22507 (13) | 0.27457 (17) | 0.85347 (10) | 0.0587 (4) |
| C22  | -0.20792 (14) | 0.2662 (2)   | 0.78517 (10) | 0.0677 (5) |
| H22  | -0.2651       | 0.2375       | 0.7371       | 0.081*     |
| C23  | -0.10906 (14) | 0.2989 (2)   | 0.78607 (10) | 0.0686 (5) |
| H23  | -0.0998       | 0.2908       | 0.7391       | 0.082*     |
| C24  | -0.33470 (16) | 0.2402 (2)   | 0.85113 (14) | 0.0862 (6) |
| H24A | -0.3242       | 0.1757       | 0.8915       | 0.129*     |
| H24B | -0.3827       | 0.2066       | 0.7986       | 0.129*     |
| H24C | -0.3673       | 0.3162       | 0.8617       | 0.129*     |
| C25  | 0.48771 (13)  | 0.71594 (16) | 0.98580 (9)  | 0.0577 (4) |
| H25A | 0.4623        | 0.7200       | 1.0276       | 0.069*     |
| H25B | 0.5661        | 0.6964       | 1.0114       | 0.069*     |
| C26  | 0.37595 (13)  | 0.90213 (17) | 0.93213 (9)  | 0.0570 (4) |
| C27  | 0.35602 (14)  | 1.01911 (17) | 0.87936 (9)  | 0.0602 (4) |
| C28  | 0.42569 (17)  | 1.0441 (2)   | 0.84353 (11) | 0.0796 (6) |
| H28A | 0.4046        | 1.1243       | 0.8141       | 0.119*     |
| H28B | 0.4202        | 0.9749       | 0.8071       | 0.119*     |

# supporting information

| H28C | 0.5004       | 1.0505     | 0.8847       | 0.119*     |
|------|--------------|------------|--------------|------------|
| C29  | 0.26432 (16) | 1.0942 (2) | 0.86929 (13) | 0.0811 (6) |
| H29A | 0.2461       | 1.1673     | 0.8364       | 0.097*     |
| H29B | 0.2216       | 1.0709     | 0.8955       | 0.097*     |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0557 (7)  | 0.0505 (7)  | 0.0649 (7)  | -0.0080 (5)  | 0.0246 (5)  | 0.0027 (5)   |
| O2  | 0.0758 (9)  | 0.0834 (10) | 0.1147 (11) | 0.0109 (7)   | 0.0579 (8)  | 0.0339 (8)   |
| C1  | 0.0726 (13) | 0.118 (2)   | 0.0835 (13) | -0.0401 (13) | 0.0388 (10) | -0.0140 (12) |
| C2  | 0.0500 (9)  | 0.0826 (14) | 0.0505 (9)  | -0.0163 (9)  | 0.0190 (7)  | -0.0017 (8)  |
| C3  | 0.0696 (11) | 0.0693 (13) | 0.0667 (11) | -0.0188 (9)  | 0.0305 (9)  | -0.0104 (8)  |
| C4  | 0.0583 (10) | 0.0750 (13) | 0.0695 (10) | -0.0031 (9)  | 0.0334 (8)  | -0.0063 (9)  |
| C5  | 0.0429 (8)  | 0.0647 (11) | 0.0548 (9)  | -0.0044 (7)  | 0.0193 (6)  | 0.0062 (7)   |
| C6  | 0.0491 (9)  | 0.0597 (11) | 0.0597 (9)  | -0.0011 (8)  | 0.0178 (7)  | 0.0045 (7)   |
| C7  | 0.0459 (8)  | 0.0798 (13) | 0.0599 (9)  | 0.0026 (8)   | 0.0231 (7)  | 0.0046 (8)   |
| C8  | 0.0467 (9)  | 0.0706 (12) | 0.0620 (10) | -0.0033 (8)  | 0.0211 (7)  | 0.0084 (8)   |
| C9  | 0.0472 (9)  | 0.0640 (11) | 0.0593 (9)  | -0.0022 (8)  | 0.0206 (7)  | 0.0073 (7)   |
| C10 | 0.0401 (8)  | 0.0523 (9)  | 0.0531 (8)  | -0.0007 (6)  | 0.0154 (6)  | 0.0107 (7)   |
| C11 | 0.0421 (8)  | 0.0456 (9)  | 0.0494 (8)  | -0.0001 (6)  | 0.0119 (6)  | 0.0084 (6)   |
| C12 | 0.0463 (8)  | 0.0525 (10) | 0.0553 (8)  | 0.0007 (7)   | 0.0212 (6)  | 0.0069 (7)   |
| C13 | 0.0424 (8)  | 0.0476 (9)  | 0.0612 (9)  | -0.0024 (7)  | 0.0171 (6)  | 0.0080 (7)   |
| C14 | 0.0509 (9)  | 0.0536 (10) | 0.0554 (9)  | -0.0065 (7)  | 0.0161 (7)  | 0.0009 (7)   |
| C15 | 0.0523 (9)  | 0.0583 (10) | 0.0573 (9)  | -0.0020 (8)  | 0.0237 (7)  | 0.0023 (7)   |
| C16 | 0.0479 (9)  | 0.0551 (10) | 0.0690 (10) | -0.0053 (8)  | 0.0216 (7)  | 0.0021 (8)   |
| C17 | 0.0507 (9)  | 0.0574 (11) | 0.0724 (11) | -0.0068 (8)  | 0.0249 (8)  | 0.0017 (8)   |
| C18 | 0.0501 (9)  | 0.0485 (9)  | 0.0641 (9)  | -0.0054 (7)  | 0.0245 (7)  | 0.0030 (7)   |
| C19 | 0.0566 (10) | 0.0726 (13) | 0.0562 (9)  | -0.0077 (8)  | 0.0166 (7)  | -0.0021 (8)  |
| C20 | 0.0693 (11) | 0.0791 (14) | 0.0604 (10) | -0.0067 (9)  | 0.0358 (8)  | -0.0004 (8)  |
| C21 | 0.0548 (9)  | 0.0561 (11) | 0.0700 (10) | -0.0057 (8)  | 0.0320 (8)  | 0.0037 (8)   |
| C22 | 0.0567 (10) | 0.0817 (14) | 0.0618 (10) | -0.0236 (9)  | 0.0233 (8)  | -0.0106 (9)  |
| C23 | 0.0653 (11) | 0.0865 (14) | 0.0605 (10) | -0.0212 (10) | 0.0335 (8)  | -0.0097 (9)  |
| C24 | 0.0667 (12) | 0.1030 (18) | 0.1036 (15) | -0.0148 (12) | 0.0509 (11) | -0.0018 (12) |
| C25 | 0.0532 (9)  | 0.0528 (10) | 0.0553 (9)  | -0.0048 (7)  | 0.0131 (7)  | 0.0041 (7)   |
| C26 | 0.0530 (9)  | 0.0551 (11) | 0.0582 (9)  | -0.0084 (8)  | 0.0201 (7)  | 0.0009 (7)   |
| C27 | 0.0602 (10) | 0.0513 (10) | 0.0579 (9)  | -0.0139 (8)  | 0.0157 (7)  | 0.0005 (7)   |
| C28 | 0.0817 (13) | 0.0797 (15) | 0.0774 (12) | -0.0135 (11) | 0.0350 (10) | 0.0150 (10)  |
| C29 | 0.0765 (13) | 0.0589 (13) | 0.1095 (15) | 0.0069 (10)  | 0.0422 (11) | 0.0221 (11)  |

Geometric parameters (Å, °)

| 01—C26 | 1.340 (2)   | C14—H14 | 0.9300    |  |
|--------|-------------|---------|-----------|--|
| O1—C25 | 1.449 (2)   | C15—H15 | 0.9300    |  |
| O2—C26 | 1.1900 (19) | C16—C17 | 1.196 (2) |  |
| C1—C2  | 1.501 (2)   | C17—C18 | 1.436 (2) |  |
| C1—H1A | 0.9600      | C18—C19 | 1.383 (2) |  |
| C1—H1B | 0.9600      | C18—C23 | 1.392 (2) |  |
|        |             |         |           |  |

| C1—H1C                     | 0.9600               | C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.371 (2)                |
|----------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| C2—C3                      | 1.372 (2)            | C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9300                   |
| C2—C7                      | 1.392 (3)            | C20—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.382 (2)                |
| C3—C4                      | 1.375 (2)            | C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9300                   |
| С3—Н3                      | 0.9300               | C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.376 (2)                |
| C4—C5                      | 1.397 (3)            | C21—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.502 (2)                |
| С4—Н4                      | 0.9300               | C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.368 (2)                |
| C5-C6                      | 1 387 (2)            | C22—H22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9300                   |
| C5-C8                      | 1 434 (2)            | C23—H23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9300                   |
| C6—C7                      | 1.131(2)<br>1.382(2) | C24—H24A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9600                   |
| С6—Н6                      | 0.9300               | C24—H24B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9600                   |
| С7—Н7                      | 0.9300               | $C_{24}$ H24C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9600                   |
| C8 - C9                    | 1.188(2)             | C25—H25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9700                   |
| C9-C10                     | 1.100(2)<br>1.433(2) | C25—H25B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9700                   |
| C10-C15                    | 1.402(2)             | C26_C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.497(2)                 |
| $C_{10}$ $C_{11}$          | 1.402(2)             | $C_{20} = C_{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.797(2)                 |
| $C_{11}$ $C_{12}$          | 1.403(2)             | $C_{27} = C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.300(3)                 |
| $C_{11} = C_{12}$          | 1.377(2)<br>1.503(2) | $C_2 = C_2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0600                   |
| $C_{11} = C_{23}$          | 1.303(2)             | $C_{20}$ $H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9000                   |
| C12 - C13                  | 1.400(2)             | $C_{20}$ $H_{20}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9000                   |
| C12 - H12                  | 0.9300               | $C_{20}$ H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9000                   |
| C12 - C14                  | 1.300(2)<br>1.421(2) | C29—H29A<br>C20_H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9300                   |
| C13 - C10                  | 1.431(2)             | С29—Н29В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9300                   |
| C14—C13                    | 1.309 (2)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| C26—O1—C25                 | 116.40(13)           | C16—C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178.2 (2)                |
| C2—C1—H1A                  | 109.5                | C19—C18—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117.78 (15)              |
| C2—C1—H1B                  | 109.5                | C19—C18—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.51 (15)              |
| H1A—C1—H1B                 | 109.5                | C23—C18—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.69 (15)              |
| C2-C1-H1C                  | 109.5                | C20—C19—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.65 (15)              |
| H1A—C1—H1C                 | 109.5                | C20—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.7                    |
| H1B—C1—H1C                 | 109.5                | C18—C19—H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.7                    |
| C3-C2-C7                   | 117.78 (16)          | C19-C20-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.77 (15)              |
| $C_{3} - C_{2} - C_{1}$    | 120 8 (2)            | C19—C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.1                    |
| C7 - C2 - C1               | 121.40(18)           | C21—C20—H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.1                    |
| $C_{2} - C_{3} - C_{4}$    | 121.86 (19)          | $C^{22}$ $C^{21}$ $C^{20}$ $C^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117 29 (16)              |
| $C_2 = C_3 = H_3$          | 119.1                | $C^{22} = C^{21} = C^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121 11 (16)              |
| C4 - C3 - H3               | 119.1                | $C_{20}$ $C_{21}$ $C_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121.11(10)<br>121.60(16) |
| $C_{4} = C_{5} = C_{5}$    | 120 34 (17)          | $C_{23}$ $C_{23}$ $C_{23}$ $C_{23}$ $C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.00(10)<br>121.79(15) |
| $C_3 - C_4 - H_4$          | 110.8                | C23_C22_H22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.1                    |
| $C_{5}$ $C_{4}$ $H_{4}$    | 119.8                | C21-C22-H22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.1                    |
| $C_{5}$ $C_{5}$ $C_{4}$    | 119.8                | $C_{21} C_{22} C_{122} C_{122} C_{13} C_{18} C_{18$                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1                    |
| C6 C5 C8                   | 121.60 (17)          | $C_{22} = C_{23} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.7                    |
| $C_{4}$ $C_{5}$ $C_{8}$    | 119 03 (17)          | $C_{22} = C_{23} = H_{23}$<br>$C_{18} = C_{23} = H_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.7                    |
| $C_{\tau} = C_{J} = C_{0}$ | 119.99 (10)          | $C_{10} - C_{23} - 11_{23}$<br>$C_{21} - C_{24} - H_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.7                    |
| С7—С6— Ч6                  | 120.30 (10)          | $C_{21} = C_{24} = H_{24} = H_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| $C_1 = C_0 = 110$          | 117.7                | $U_{21} = U_{24} = \Pi_{24D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                    |
| $C_{5}$                    | 117.7                | $\frac{1124A}{C21} C24 = \frac{1124B}{C21} C24 = 11$ | 109.5                    |
| Со-с7-47                   | 121.34 (17)          | $\begin{array}{c} C_{21} \hline C_{24} \hline D_{24}C \\ H_{24}\Delta_{-} C_{24} \hline H_{24}C \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                    |
|                            | 117.5                | 11270-027-11240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102.5                    |

| С2—С7—Н7        | 119.3        | H24B—C24—H24C   | 109.5        |
|-----------------|--------------|-----------------|--------------|
| C9—C8—C5        | 175.8 (2)    | O1—C25—C11      | 109.61 (12)  |
| C8—C9—C10       | 177.4 (2)    | O1—C25—H25A     | 109.7        |
| C15—C10—C11     | 118.99 (14)  | C11—C25—H25A    | 109.7        |
| C15—C10—C9      | 120.60 (14)  | O1—C25—H25B     | 109.7        |
| C11—C10—C9      | 120.40 (15)  | C11—C25—H25B    | 109.7        |
| C12—C11—C10     | 119.64 (14)  | H25A—C25—H25B   | 108.2        |
| C12—C11—C25     | 120.35 (14)  | O2—C26—O1       | 123.25 (16)  |
| C10—C11—C25     | 119.95 (14)  | O2—C26—C27      | 124.08 (17)  |
| C11—C12—C13     | 121.12 (14)  | O1—C26—C27      | 112.66 (14)  |
| C11—C12—H12     | 119.4        | C28—C27—C29     | 125.20 (18)  |
| C13—C12—H12     | 119.4        | C28—C27—C26     | 119.44 (17)  |
| C14—C13—C12     | 118.78 (14)  | C29—C27—C26     | 115.34 (16)  |
| C14—C13—C16     | 121.41 (15)  | C27—C28—H28A    | 109.5        |
| C12—C13—C16     | 119.81 (15)  | C27—C28—H28B    | 109.5        |
| C15—C14—C13     | 120.85 (15)  | H28A—C28—H28B   | 109.5        |
| C15—C14—H14     | 119.6        | C27—C28—H28C    | 109.5        |
| C13—C14—H14     | 119.6        | H28A—C28—H28C   | 109.5        |
| C14—C15—C10     | 120.59 (15)  | H28B—C28—H28C   | 109.5        |
| C14—C15—H15     | 119.7        | С27—С29—Н29А    | 120.0        |
| C10—C15—H15     | 119.7        | С27—С29—Н29В    | 120.0        |
| C17—C16—C13     | 179.05 (19)  | H29A—C29—H29B   | 120.0        |
|                 |              |                 |              |
| C7—C2—C3—C4     | -1.3 (3)     | C11—C10—C15—C14 | 1.0 (2)      |
| C1—C2—C3—C4     | 177.14 (16)  | C9—C10—C15—C14  | -177.85 (14) |
| C2—C3—C4—C5     | -0.1 (3)     | C23—C18—C19—C20 | -1.3 (3)     |
| C3—C4—C5—C6     | 1.0 (2)      | C17—C18—C19—C20 | 177.03 (17)  |
| C3—C4—C5—C8     | -177.52 (15) | C18—C19—C20—C21 | -0.3 (3)     |
| C4—C5—C6—C7     | -0.5 (2)     | C19—C20—C21—C22 | 1.3 (3)      |
| C8—C5—C6—C7     | 178.01 (13)  | C19—C20—C21—C24 | -178.41 (19) |
| C5—C6—C7—C2     | -0.9 (2)     | C20—C21—C22—C23 | -0.7 (3)     |
| C3—C2—C7—C6     | 1.9 (2)      | C24—C21—C22—C23 | 179.1 (2)    |
| C1—C2—C7—C6     | -176.61 (15) | C21—C22—C23—C18 | -1.0(3)      |
| C15—C10—C11—C12 | 0.2 (2)      | C19—C18—C23—C22 | 2.0 (3)      |
| C9-C10-C11-C12  | 179.08 (14)  | C17—C18—C23—C22 | -176.36 (18) |
| C15—C10—C11—C25 | -177.08 (14) | C26—O1—C25—C11  | 83.10 (17)   |
| C9—C10—C11—C25  | 1.8 (2)      | C12—C11—C25—O1  | -102.30 (16) |
| C10-C11-C12-C13 | -0.9(2)      | C10-C11-C25-O1  | 75.01 (18)   |
| C25—C11—C12—C13 | 176.44 (14)  | C25—O1—C26—O2   | 7.0 (2)      |
| C11—C12—C13—C14 | 0.3 (2)      | C25—O1—C26—C27  | -172.09 (13) |
| C11—C12—C13—C16 | -179.67 (14) | O2—C26—C27—C28  | -173.18 (18) |
| C12—C13—C14—C15 | 1.0 (2)      | O1—C26—C27—C28  | 5.9 (2)      |
| C16—C13—C14—C15 | -179.08 (15) | O2—C26—C27—C29  | 5.6 (3)      |
| ~~~ ~~          |              |                 |              |