metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1031-m1032

Poly[[μ-1,4-bis­­(1H-imidazol-4-yl)benzene-κ2N3:N3′](μ-5-methyl­isophthalato-κ2O1:O3)cobalt(II)]

aDepartment of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China
*Correspondence e-mail: sscfync@163.com

(Received 10 May 2011; accepted 29 June 2011; online 6 July 2011)

In the title coordination polymer, [Co(C9H6O4)(C12H10N4)]n, the CoII atom is four-coordinated by two O atoms from two different 5-methyl­isophthalate bivalent anions and two N atoms from two different 1,4-bis­(1H-imidazol-4-yl)benzene ligands, forming a four-coordinated tetra­hedral coordination geometry. Each 5-methyl­isophthalate ligand acts as a μ2-bridge, linking two CoII atoms and forming chains which are further linked by 1,4-bis­(1H-imidazol-4-yl)benzene ligands into a two-dimensional network parallel to ([\overline{2}]01). These planes are, in turn, linked by two inter­molecular N—H⋯O inter­actions, forming a three-dimensional structure. Weak C—H⋯O hydrogen bonds are also present in the structure.

Related literature

For background to mixed inorganic-organic hybrid materials, see: Kitagawa & Kondo (1998[Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739-1753.]). For examples with mixed organic and N-containing ligands, see: Liu et al. (2007[Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027-3037.]); Chen et al. (2010[Chen, S. S., Fan, J., Okamura, T.-A. & Chen, M. S. (2010). Cryst. Growth Des. 10, 812-822.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H6O4)(C12H10N4)]

  • Mr = 447.31

  • Monoclinic, P 21 /c

  • a = 7.4608 (5) Å

  • b = 13.8212 (10) Å

  • c = 17.8629 (13) Å

  • β = 90.451 (1)°

  • V = 1841.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.815, Tmax = 0.884

  • 16427 measured reflections

  • 4210 independent reflections

  • 3540 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.100

  • S = 1.12

  • 4210 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.86 2.16 2.825 (3) 134
N3—H3⋯O2ii 0.86 1.96 2.803 (2) 165
C9—H9⋯O2 0.93 2.39 3.274 (3) 158
C11—H11⋯O3iii 0.93 2.56 3.182 (3) 124
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last decades there has been significant interest in the design and synthesis of mixed inorganic-organic hybrid materials owing to their potential application in catalysis, gas storage and separation, ion exchange and magnetism (Kitagawa & Kondo, 1998)). Recent studies illustrated that mixed organic ligands, especially the mixed polycarboxylate and N-containing ones, with more tunable factors, are good candidates for the construction of novel MOFs (Liu et al., 2007). And based on the mix ligand strategy, we focus our attention in the study of reactions of the 1,4-di(1H-imidazol-4-yl)benzene ligand (L) together with different carboxylate ligands and salts, and made a systematic investigation on the impact of carboxylate ligands on the structure of the resulting complexes; as a result a series of novel structures have been synthesized (Chen et al., 2010). As an extension of the above work we report herein a new metal complex, Co(C9H6O4) (C12H10N4)]n (I) based on the organic ligands 1,4-di(1H-imidazol-4-yl)benzene (L) and 5-methylisophthalic acid (H2pda), together with CoII salts. In the title compound, the Co II atom is tetrahedrally coordinated by two nitrogen atoms from two L molecules and two carboxylic oxygens atoms from two pda2- ligands (Fig.1). The pda2- ligand acts in a bidentate fashion (via two monodentate carboxylate groups) to connect CoII atoms into a one-dimensional chain (Fig.2), while the L ligand acts as a linear bidentate bridge to link chains to form two-dimensional networks paralell to (201) (Fig.3). These planes are in turn linked into a 3D structure by two intermolecular N—H···O interactions and two weaker C-H···O contacts (Table 1)

Related literature top

For background to mixed inorganic-organic hybrid materials, see: Kitagawa & Kondo (1998). For examples with mixed organic and N-containing ligands, see: Liu et al. (2007); Chen et al. (2010).

Experimental top

All reagents and solvents were used as obtained commercially without further purification. A mixture containing CoCl2.6H2O (23.8 mg, 0.1 mmol), L (21.1 mg, 0.1 mmol), DMF (N:N'- dimethylformamide, 1 ml), 10 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated at 393 K for 72 h. After cooling to room temperature within 12 h, block brown crystals of (I) suitable for X-ray diffraction analysis were obtained in 78% Yield.

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93 Å and 0.96 Å for aryl and methyl type H-atoms, respectively with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl). The amide H atoms were generated theoretically, with the N—H distances 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: (i) 2 - x, -y, 1 - z, (ii) 1 - x, 1/2 + y, 0.5 - z.
[Figure 2] Fig. 2. An infinite one-dimensional chain formed from CoII centers and pda2- anions of the compound (I).
[Figure 3] Fig. 3. The two-dimensional structure built from one-dimension chains connected by L ligands of the compound (I).
Poly[[µ-1,4-bis(1H-imidazol-4-yl)benzene- κ2N3:N3'](µ-5-methylisophthalato- κ2O1:O3)cobalt(II)] top
Crystal data top
[Co(C9H6O4)(C12H10N4)]F(000) = 916
Mr = 447.31Dx = 1.613 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5943 reflections
a = 7.4608 (5) Åθ = 2.2–27.5°
b = 13.8212 (10) ŵ = 0.97 mm1
c = 17.8629 (13) ÅT = 296 K
β = 90.451 (1)°Block, purple
V = 1841.9 (2) Å30.22 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4210 independent reflections
Radiation source: fine-focus sealed tube3540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.815, Tmax = 0.884k = 1717
16427 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.5242P]
where P = (Fo2 + 2Fc2)/3
4210 reflections(Δ/σ)max = 0.010
272 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co(C9H6O4)(C12H10N4)]V = 1841.9 (2) Å3
Mr = 447.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4608 (5) ŵ = 0.97 mm1
b = 13.8212 (10) ÅT = 296 K
c = 17.8629 (13) Å0.22 × 0.18 × 0.13 mm
β = 90.451 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4210 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3540 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.884Rint = 0.032
16427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.12Δρmax = 0.45 e Å3
4210 reflectionsΔρmin = 0.34 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.54880 (4)0.195950 (18)0.350426 (14)0.02058 (10)
C10.7795 (3)0.12914 (15)0.66061 (11)0.0255 (4)
H10.81860.14890.70780.031*
C20.6298 (3)0.17243 (15)0.62840 (11)0.0266 (4)
H20.56850.22000.65470.032*
C30.5697 (3)0.14555 (14)0.55695 (11)0.0226 (4)
C40.6616 (3)0.07175 (14)0.52012 (11)0.0238 (4)
H40.62350.05240.47280.029*
C50.8076 (3)0.02726 (14)0.55266 (11)0.0241 (4)
H50.86430.02290.52750.029*
C60.8721 (3)0.05623 (14)0.62299 (10)0.0218 (4)
C70.4104 (3)0.18914 (13)0.52141 (11)0.0231 (4)
C80.2542 (3)0.21709 (16)0.55384 (12)0.0295 (5)
H80.22850.21650.60470.035*
C90.2298 (3)0.23532 (15)0.43242 (11)0.0268 (4)
H90.18220.25030.38560.032*
C101.0349 (3)0.00981 (14)0.65210 (10)0.0220 (4)
C111.1089 (3)0.07682 (14)0.63344 (11)0.0244 (4)
H111.05660.12200.60150.029*
C121.2952 (3)0.00842 (15)0.70919 (11)0.0279 (4)
H121.39490.00410.73920.033*
C130.1442 (3)0.10168 (13)0.19263 (10)0.0219 (4)
C140.0230 (3)0.11928 (14)0.16014 (11)0.0248 (4)
H140.08100.17750.16970.030*
C150.1051 (3)0.05121 (15)0.11349 (11)0.0265 (4)
C160.0144 (3)0.03479 (15)0.09966 (11)0.0270 (4)
H160.06510.07980.06710.032*
C170.1502 (3)0.05523 (14)0.13329 (11)0.0230 (4)
C180.2293 (3)0.01403 (14)0.17953 (11)0.0234 (4)
H180.33990.00150.20180.028*
C190.2909 (3)0.06834 (19)0.08092 (15)0.0419 (6)
H19A0.33090.01100.05540.063*
H19B0.28680.12130.04620.063*
H19C0.37240.08350.12060.063*
C200.2386 (3)0.15191 (15)0.12306 (11)0.0251 (4)
C210.2327 (3)0.17620 (14)0.24256 (11)0.0237 (4)
N10.3928 (2)0.20055 (12)0.44391 (9)0.0231 (4)
N20.1423 (3)0.24621 (13)0.49691 (10)0.0295 (4)
H2A0.03480.26770.50180.035*
N31.1559 (2)0.05179 (12)0.70134 (9)0.0258 (4)
H31.14380.10690.72310.031*
N41.2734 (2)0.08794 (12)0.66891 (9)0.0244 (4)
O10.3807 (2)0.14966 (11)0.27237 (9)0.0342 (4)
O20.1604 (2)0.25623 (10)0.25192 (9)0.0353 (4)
O30.1867 (2)0.21003 (11)0.07470 (9)0.0337 (4)
O40.3683 (2)0.17173 (11)0.16856 (9)0.0324 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01940 (16)0.01927 (15)0.02303 (15)0.00030 (10)0.00299 (10)0.00033 (9)
C10.0277 (11)0.0262 (10)0.0225 (9)0.0019 (9)0.0044 (8)0.0028 (7)
C20.0287 (12)0.0236 (9)0.0273 (10)0.0052 (9)0.0016 (8)0.0029 (8)
C30.0212 (10)0.0221 (9)0.0246 (9)0.0009 (8)0.0017 (7)0.0037 (7)
C40.0232 (10)0.0266 (10)0.0216 (9)0.0009 (8)0.0033 (7)0.0009 (7)
C50.0231 (10)0.0253 (10)0.0240 (9)0.0030 (8)0.0002 (8)0.0028 (7)
C60.0199 (10)0.0219 (9)0.0235 (9)0.0000 (8)0.0016 (7)0.0036 (7)
C70.0249 (11)0.0207 (9)0.0237 (9)0.0000 (8)0.0022 (8)0.0017 (7)
C80.0290 (12)0.0325 (11)0.0268 (10)0.0061 (9)0.0003 (9)0.0023 (8)
C90.0252 (11)0.0277 (10)0.0275 (10)0.0043 (9)0.0028 (8)0.0032 (8)
C100.0210 (10)0.0239 (9)0.0211 (9)0.0003 (8)0.0020 (7)0.0019 (7)
C110.0206 (10)0.0252 (9)0.0272 (9)0.0014 (8)0.0043 (8)0.0016 (8)
C120.0241 (11)0.0303 (10)0.0292 (10)0.0013 (9)0.0077 (8)0.0005 (8)
C130.0237 (11)0.0202 (9)0.0217 (9)0.0015 (8)0.0030 (7)0.0023 (7)
C140.0244 (11)0.0200 (9)0.0299 (10)0.0033 (8)0.0034 (8)0.0016 (7)
C150.0223 (11)0.0279 (10)0.0294 (10)0.0009 (9)0.0068 (8)0.0028 (8)
C160.0265 (11)0.0244 (10)0.0299 (10)0.0021 (9)0.0071 (8)0.0032 (8)
C170.0242 (11)0.0208 (9)0.0241 (9)0.0000 (8)0.0029 (8)0.0008 (7)
C180.0210 (10)0.0227 (9)0.0264 (9)0.0007 (8)0.0057 (8)0.0002 (7)
C190.0302 (13)0.0427 (13)0.0525 (15)0.0050 (11)0.0186 (11)0.0027 (11)
C200.0234 (11)0.0227 (10)0.0291 (10)0.0011 (8)0.0005 (8)0.0004 (8)
C210.0280 (11)0.0209 (9)0.0221 (9)0.0014 (8)0.0038 (8)0.0016 (7)
N10.0221 (9)0.0242 (8)0.0229 (8)0.0015 (7)0.0024 (7)0.0020 (6)
N20.0222 (9)0.0333 (10)0.0330 (9)0.0096 (8)0.0002 (7)0.0015 (7)
N30.0266 (10)0.0224 (8)0.0282 (8)0.0026 (7)0.0059 (7)0.0029 (7)
N40.0218 (9)0.0253 (8)0.0259 (8)0.0025 (7)0.0045 (7)0.0002 (6)
O10.0304 (9)0.0307 (8)0.0411 (9)0.0016 (7)0.0150 (7)0.0095 (7)
O20.0484 (11)0.0185 (7)0.0388 (9)0.0053 (7)0.0112 (7)0.0024 (6)
O30.0338 (9)0.0255 (7)0.0419 (9)0.0032 (7)0.0028 (7)0.0104 (6)
O40.0343 (9)0.0277 (7)0.0352 (8)0.0100 (7)0.0077 (7)0.0052 (6)
Geometric parameters (Å, º) top
Co1—O4i1.9611 (15)C12—N41.323 (3)
Co1—O11.9744 (15)C12—N31.338 (3)
Co1—N4ii2.0287 (17)C12—H120.9300
Co1—N12.0438 (17)C13—C181.388 (3)
C1—C21.388 (3)C13—C141.393 (3)
C1—C61.397 (3)C13—C211.511 (3)
C1—H10.9300C14—C151.395 (3)
C2—C31.400 (3)C14—H140.9300
C2—H20.9300C15—C161.391 (3)
C3—C41.397 (3)C15—C191.517 (3)
C3—C71.472 (3)C16—C171.392 (3)
C4—C51.375 (3)C16—H160.9300
C4—H40.9300C17—C181.392 (3)
C5—C61.400 (3)C17—C201.502 (3)
C5—H50.9300C18—H180.9300
C6—C101.465 (3)C19—H19A0.9600
C7—C81.361 (3)C19—H19B0.9600
C7—N11.398 (2)C19—H19C0.9600
C8—N21.371 (3)C20—O31.239 (2)
C8—H80.9300C20—O41.288 (3)
C9—N11.323 (3)C21—O21.242 (2)
C9—N21.337 (3)C21—O11.276 (3)
C9—H90.9300N2—H2A0.8600
C10—C111.361 (3)N3—H30.8600
C10—N31.383 (3)N4—Co1ii2.0287 (17)
C11—N41.385 (3)O4—Co1iii1.9611 (15)
C11—H110.9300
O4i—Co1—O1112.31 (7)C18—C13—C21119.74 (18)
O4i—Co1—N4ii116.69 (7)C14—C13—C21120.84 (18)
O1—Co1—N4ii93.09 (7)C13—C14—C15121.23 (19)
O4i—Co1—N1107.14 (7)C13—C14—H14119.4
O1—Co1—N1102.97 (7)C15—C14—H14119.4
N4ii—Co1—N1122.64 (7)C16—C15—C14118.06 (19)
C2—C1—C6120.74 (18)C16—C15—C19120.63 (19)
C2—C1—H1119.6C14—C15—C19121.3 (2)
C6—C1—H1119.6C15—C16—C17121.72 (19)
C1—C2—C3120.96 (19)C15—C16—H16119.1
C1—C2—H2119.5C17—C16—H16119.1
C3—C2—H2119.5C16—C17—C18118.98 (18)
C4—C3—C2117.93 (19)C16—C17—C20120.98 (18)
C4—C3—C7119.58 (17)C18—C17—C20119.98 (18)
C2—C3—C7122.44 (18)C13—C18—C17120.52 (19)
C5—C4—C3121.17 (18)C13—C18—H18119.7
C5—C4—H4119.4C17—C18—H18119.7
C3—C4—H4119.4C15—C19—H19A109.5
C4—C5—C6121.12 (18)C15—C19—H19B109.5
C4—C5—H5119.4H19A—C19—H19B109.5
C6—C5—H5119.4C15—C19—H19C109.5
C1—C6—C5118.01 (18)H19A—C19—H19C109.5
C1—C6—C10123.85 (17)H19B—C19—H19C109.5
C5—C6—C10118.13 (18)O3—C20—O4122.05 (19)
C8—C7—N1108.41 (19)O3—C20—C17121.79 (19)
C8—C7—C3128.57 (19)O4—C20—C17116.14 (17)
N1—C7—C3122.82 (18)O2—C21—O1125.10 (19)
C7—C8—N2106.62 (19)O2—C21—C13119.87 (19)
C7—C8—H8126.7O1—C21—C13115.03 (17)
N2—C8—H8126.7C9—N1—C7105.86 (17)
N1—C9—N2111.22 (18)C9—N1—Co1114.42 (13)
N1—C9—H9124.4C7—N1—Co1139.11 (15)
N2—C9—H9124.4C9—N2—C8107.89 (18)
C11—C10—N3105.12 (17)C9—N2—H2A126.1
C11—C10—C6129.41 (18)C8—N2—H2A126.1
N3—C10—C6125.24 (18)C12—N3—C10107.96 (17)
C10—C11—N4110.19 (18)C12—N3—H3126.0
C10—C11—H11124.9C10—N3—H3126.0
N4—C11—H11124.9C12—N4—C11105.15 (17)
N4—C12—N3111.57 (18)C12—N4—Co1ii128.76 (15)
N4—C12—H12124.2C11—N4—Co1ii125.59 (13)
N3—C12—H12124.2C21—O1—Co1138.10 (14)
C18—C13—C14119.42 (18)C20—O4—Co1iii109.00 (13)
C6—C1—C2—C31.2 (3)C18—C17—C20—O3169.7 (2)
C1—C2—C3—C42.0 (3)C16—C17—C20—O4165.3 (2)
C1—C2—C3—C7179.3 (2)C18—C17—C20—O411.9 (3)
C2—C3—C4—C50.5 (3)C18—C13—C21—O2177.05 (19)
C7—C3—C4—C5177.92 (19)C14—C13—C21—O23.7 (3)
C3—C4—C5—C61.8 (3)C18—C13—C21—O13.0 (3)
C2—C1—C6—C51.1 (3)C14—C13—C21—O1176.23 (19)
C2—C1—C6—C10177.6 (2)N2—C9—N1—C70.4 (2)
C4—C5—C6—C12.5 (3)N2—C9—N1—Co1173.18 (14)
C4—C5—C6—C10176.18 (19)C8—C7—N1—C90.6 (2)
C4—C3—C7—C8140.6 (2)C3—C7—N1—C9175.72 (18)
C2—C3—C7—C836.7 (3)C8—C7—N1—Co1170.50 (16)
C4—C3—C7—N133.6 (3)C3—C7—N1—Co114.3 (3)
C2—C3—C7—N1149.1 (2)O4i—Co1—N1—C976.95 (16)
N1—C7—C8—N20.5 (2)O1—Co1—N1—C941.65 (16)
C3—C7—C8—N2175.31 (19)N4ii—Co1—N1—C9143.96 (14)
C1—C6—C10—C11159.7 (2)O4i—Co1—N1—C792.4 (2)
C5—C6—C10—C1121.6 (3)O1—Co1—N1—C7148.99 (19)
C1—C6—C10—N326.5 (3)N4ii—Co1—N1—C746.7 (2)
C5—C6—C10—N3152.1 (2)N1—C9—N2—C80.1 (3)
N3—C10—C11—N41.1 (2)C7—C8—N2—C90.3 (2)
C6—C10—C11—N4173.60 (19)N4—C12—N3—C100.6 (2)
C18—C13—C14—C151.3 (3)C11—C10—N3—C121.0 (2)
C21—C13—C14—C15179.49 (18)C6—C10—N3—C12173.96 (19)
C13—C14—C15—C160.6 (3)N3—C12—N4—C110.1 (2)
C13—C14—C15—C19177.2 (2)N3—C12—N4—Co1ii172.10 (14)
C14—C15—C16—C172.6 (3)C10—C11—N4—C120.8 (2)
C19—C15—C16—C17175.2 (2)C10—C11—N4—Co1ii171.73 (14)
C15—C16—C17—C182.7 (3)O2—C21—O1—Co110.4 (4)
C15—C16—C17—C20174.58 (19)C13—C21—O1—Co1169.49 (15)
C14—C13—C18—C171.2 (3)O4i—Co1—O1—C2155.5 (2)
C21—C13—C18—C17179.59 (18)N4ii—Co1—O1—C21176.1 (2)
C16—C17—C18—C130.8 (3)N1—Co1—O1—C2159.4 (2)
C20—C17—C18—C13176.52 (18)O3—C20—O4—Co1iii2.4 (3)
C16—C17—C20—O313.1 (3)C17—C20—O4—Co1iii176.03 (14)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3iv0.862.162.825 (3)134
N3—H3···O2v0.861.962.803 (2)165
C9—H9···O20.932.393.274 (3)158
C11—H11···O3vi0.932.563.182 (3)124
Symmetry codes: (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C9H6O4)(C12H10N4)]
Mr447.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4608 (5), 13.8212 (10), 17.8629 (13)
β (°) 90.451 (1)
V3)1841.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.22 × 0.18 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.815, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
16427, 4210, 3540
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.100, 1.12
No. of reflections4210
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.34

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.162.825 (3)134
N3—H3···O2ii0.861.962.803 (2)165
C9—H9···O20.932.393.274 (3)158
C11—H11···O3iii0.932.563.182 (3)124
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Provincial Education Commission (Nos. KJ2011B128 and KJ2009A047Z).

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S. S., Fan, J., Okamura, T.-A. & Chen, M. S. (2010). Cryst. Growth Des. 10, 812–822.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem. 46, 3027–3037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1031-m1032
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds