metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­(μ7-bi­phenyl-3,3′,4,4′-tetra­carboxyl­ato)(1,10-phenanthroline)dicobalt(II)] monohydrate]

aCollege of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 255666, People's Republic of China, and bEnvironmental Protection Bureau of Dongying, Dongying 257091, People's Republic of China
*Correspondence e-mail: yinhl2000@163.com

(Received 26 June 2011; accepted 14 July 2011; online 23 July 2011)

In the title compound, {[Co2(C16H6O8)(C12H8N2)(H2O)2]·H2O}n, one CoII ion has a {CoN2O4} distorted octa­hedral environment defined by two N atoms of one 1,10-phenanthroline (phen) ligand, three O atoms of the carboxyl­ate groups of three biphenyl-3,3′,4,4′-tetra­carboxyl­ate (BPTC) ligands, one of which is bidentate, and one O atom from one coordinated water mol­ecule. The other CoII atom is surrounded by six O atoms from four different BPTC ligands and one coordinated water mol­ecule. Each BPTC ligand forms eight coordination bonds with seven CoII atoms, leading to a layer structure along the ac plane. Uncoordinated water mol­ecules occupy the space between the layers, and inter­act via inter­layer O—H⋯O hydrogen bonds along the b axis, generating a three-dimensional supra­molecular network.

Related literature

For applications of compounds with metal-organic framework structures (MOFs), see: Rowsell & Yaghi (2005[Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.]). For related structures, see: Zhu et al. (2008[Zhu, S. R., Zhang, H., Shao, M., Zhao, Y. M. & Li, M. X. (2008). Transition Met. Chem. 33, 669-680.]); Konar et al. (2004[Konar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2004). Dalton Trans. pp. 260-266.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C16H6O8)(C12H8N2)(H2O)2]·H2O

  • Mr = 678.32

  • Triclinic, [P \overline 1]

  • a = 9.793 (3) Å

  • b = 10.885 (3) Å

  • c = 12.453 (3) Å

  • α = 97.567 (4)°

  • β = 102.608 (4)°

  • γ = 95.653 (4)°

  • V = 1273.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 298 K

  • 0.40 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.609, Tmax = 0.810

  • 6716 measured reflections

  • 4641 independent reflections

  • 3194 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.113

  • S = 0.98

  • 4641 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11B⋯O7i 0.85 2.04 2.886 (6) 173
O11—H11A⋯O7ii 0.85 2.15 2.931 (5) 152
O10—H10B⋯O7iii 0.85 2.20 2.668 (4) 115
O10—H10A⋯O2iv 0.85 1.95 2.756 (4) 159
O9—H9A⋯O3 0.85 2.09 2.661 (4) 124
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y-1, z-1; (iii) x, y, z-1; (iv) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The assembly of coordination architectures has attracted much attention in recent years due to their potential applications in separation, sorption, hydrogen storage, and catalysis, as well as due to their intriguing topologies such as molecular ladders, grids, rings, boxes, honeycombs, and diamondoids (Rowsell & Yaghi, 2005). Coordination polymers containing biphenylpolycarboxylate and 1,10-phenanthroline as ligands have played a important role in the area of modern coordination chemistry. A few coordination polymers dealing with 3,3',4,4'-biphenyltetracarboxylate (H4BPTC) and 1,10-phenanthroline (phen) have been reported (Zhu et al., 2008). Herein, we report a new cobalt coordination polymer, {[Co2(C16H6O8)(C12H8N2)(H2O)2]H2O}n, resulting from reaction of Co2+ cations, phen and H4BPTC under hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit consists of two crystallographically independent Co2+ ions, one fully deprotonated BPTC4- anion, a chelating phen ligand, two coordinated water molecules and one lattice water molecule. The Co1 center is in an octahedral environment defined by two N atoms of one phen ligand, three O atoms of carboxylate groups from three BPTC ligands, and one O atom from one coordinated water molecule. The Co1–O bond lengths fall in the range 2.001 (3)–2.149 (3) Å and the two Co1-N distances are 2.108 (4) and 2.143 (4) Å, thus falling in the expected region (Konar, et al., 2004). The Co2 atom is surrounded by six O atoms from four different BPTC ligands and one coordinated water molecule with Co–O distances in the range 2.025 (3)–2.210 (3) Å, and O–Co–O angles varying from 61.42 (11)°–168.23 (11)°. The octahedral coordination around the Co atoms is strongly distorted since the diametrical and non-diametrical bond angles indicate significant deviations from 180° and 90°, respectively. BPTC4- forms eight coordination bonds with seven Co centers. Two carboxylates of BPTC4- act as monodentate bridging and adopt a µ2-η2:η0 coordinated mode, one carboxylate acts as bidentate bridging and adopts a µ2-η1:η1 coordinated mode, while the remaining carboxylate chelates a Co cation. As a result, each BPTC4- forms eight coordination bonds with seven Co centers, leading to a 2D layer structure parallel to the ac plane. Lattice water molecules occupy the space between 2D layers, and interact via interlayer O–H···O hydrogen bonds along the b-axis to generate a 3D supramolecular network (Table 1 and Fig.2).

Related literature top

For applications of metal-organic frameworks (MOFs), see: Rowsell et al. (2005). For related structures, see: Zhu et al. (2008); Konar et al. (2004).

Experimental top

A mixture of Co(NO3)2.6H2O (146 mg, 0.5 mmol),3,3',4,4' -biphenyltetracarboxylate (74 mg, 0.25 mmol), phen (99 mg, 0.5 mmol), NaOH (40 mg, 1.0 mmol) and water (15 ml) were heated at 393 K for 4 days in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. Slow cooling of the reaction mixture at 2 K/min to room temperature gave salmon pink block crystals.

Refinement top

Hydrogen atoms attached to carbon were idealized and included as riding atoms; those attached to oxygen were located in the difference map, idealized and refined as riding. [d(O—H) = 0.85 Å; Uiso(H) = 1.2Ueq(O)]

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of (I), showing 30% displacement ellipsoids. Symmetry codes: (i) x, y, z - 2; (ii) -x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 2 - z.
[Figure 2] Fig. 2. : Crystal packing of (I) as viewed down the crystallographic a axis.
Poly[[aqua(µ7-biphenyl-3,3',4,4'-tetracarboxylato)(1,10- phenanthroline)dicobalt(II)] monohydrate] top
Crystal data top
[Co2(C16H6O8)(C12H8N2)(H2O)2]·H2OZ = 2
Mr = 678.32F(000) = 688
Triclinic, P1Dx = 1.770 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.793 (3) ÅCell parameters from 1160 reflections
b = 10.885 (3) Åθ = 2.3–22.3°
c = 12.453 (3) ŵ = 1.38 mm1
α = 97.567 (4)°T = 298 K
β = 102.608 (4)°Block, red
γ = 95.653 (4)°0.40 × 0.17 × 0.16 mm
V = 1273.1 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4641 independent reflections
Radiation source: fine-focus sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 119
Tmin = 0.609, Tmax = 0.810k = 913
6716 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
4641 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Co2(C16H6O8)(C12H8N2)(H2O)2]·H2Oγ = 95.653 (4)°
Mr = 678.32V = 1273.1 (6) Å3
Triclinic, P1Z = 2
a = 9.793 (3) ÅMo Kα radiation
b = 10.885 (3) ŵ = 1.38 mm1
c = 12.453 (3) ÅT = 298 K
α = 97.567 (4)°0.40 × 0.17 × 0.16 mm
β = 102.608 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4641 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3194 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.810Rint = 0.034
6716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.98Δρmax = 0.46 e Å3
4641 reflectionsΔρmin = 0.50 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1205 (5)0.5902 (4)0.6684 (4)0.0227 (11)
C20.0391 (5)0.6133 (4)0.7872 (3)0.0209 (10)
C30.0950 (5)0.6775 (4)0.8670 (4)0.0284 (12)
H30.17960.70940.84500.034*
C40.0286 (5)0.6957 (4)0.9786 (4)0.0298 (12)
H40.06990.73881.03000.036*
C50.0979 (5)0.6512 (4)1.0160 (3)0.0189 (10)
C60.1527 (5)0.5852 (4)0.9355 (3)0.0234 (11)
H60.23720.55350.95830.028*
C70.0872 (5)0.5642 (4)0.8227 (3)0.0191 (10)
C80.1543 (5)0.4826 (5)0.7467 (3)0.0224 (11)
C90.1711 (4)0.6716 (4)1.1364 (3)0.0194 (10)
C100.1249 (5)0.7513 (4)1.2133 (4)0.0297 (12)
H100.04910.79391.18910.036*
C110.1904 (5)0.7684 (5)1.3263 (4)0.0317 (12)
H110.15850.82301.37650.038*
C120.3014 (5)0.7054 (4)1.3644 (4)0.0231 (11)
C130.3634 (5)0.7284 (5)1.4884 (4)0.0248 (11)
C140.3493 (5)0.6257 (4)1.2883 (3)0.0209 (10)
C150.4728 (5)0.5573 (4)1.3218 (4)0.0230 (11)
C160.2826 (5)0.6097 (4)1.1761 (3)0.0225 (10)
H160.31440.55501.12600.027*
C170.5542 (5)0.7004 (5)0.9733 (4)0.0369 (13)
H170.60560.63880.95030.044*
C180.5861 (6)0.7519 (5)1.0863 (4)0.0459 (15)
H180.65820.72571.13650.055*
C190.5106 (6)0.8406 (5)1.1219 (4)0.0446 (15)
H190.53080.87561.19680.054*
C200.4023 (6)0.8790 (5)1.0452 (4)0.0343 (13)
C210.3795 (5)0.8238 (4)0.9332 (4)0.0272 (11)
C220.2701 (5)0.8587 (4)0.8500 (4)0.0267 (11)
C230.1811 (6)0.9417 (5)0.8828 (4)0.0380 (13)
C240.2065 (6)0.9964 (5)0.9968 (5)0.0476 (15)
H240.14811.05241.01840.057*
C250.3128 (7)0.9689 (5)1.0736 (5)0.0475 (15)
H250.32901.00881.14690.057*
C260.0685 (7)0.9626 (5)0.7995 (5)0.0550 (17)
H260.00461.01510.81730.066*
C270.0522 (6)0.9065 (6)0.6930 (5)0.0533 (17)
H270.02170.92150.63730.064*
C280.1466 (6)0.8265 (5)0.6673 (4)0.0381 (13)
H280.13280.78690.59410.046*
Co10.39769 (6)0.67515 (6)0.72127 (5)0.02274 (18)
Co20.24578 (6)0.44660 (6)0.52994 (5)0.02263 (18)
N10.2553 (4)0.8043 (4)0.7428 (3)0.0277 (9)
N20.4548 (4)0.7350 (4)0.8980 (3)0.0273 (9)
O10.0796 (3)0.5208 (3)0.5955 (2)0.0285 (8)
O20.2316 (3)0.6395 (3)0.6414 (2)0.0304 (8)
O30.1484 (4)0.3712 (3)0.7556 (3)0.0385 (9)
O40.2165 (3)0.5344 (3)0.6805 (2)0.0229 (7)
O50.4838 (3)0.4631 (3)1.2562 (2)0.0284 (8)
O60.5598 (3)0.6015 (3)1.4135 (2)0.0264 (8)
O70.4224 (4)0.8357 (3)1.5296 (2)0.0352 (9)
O80.3428 (3)0.6420 (3)1.5449 (2)0.0217 (7)
O90.1558 (4)0.2681 (3)0.5513 (2)0.0376 (9)
H9A0.12900.24800.60780.045*
H9B0.13540.20420.50070.045*
O100.5871 (3)0.7894 (3)0.7169 (2)0.0306 (8)
H10A0.65250.76120.69010.037*
H10B0.57210.85740.69250.037*
O110.3441 (5)0.0884 (4)0.5642 (4)0.0968 (19)
H11A0.34800.01150.56970.116*
H11B0.40800.11110.53120.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.015 (2)0.028 (3)0.023 (2)0.001 (2)0.001 (2)0.003 (2)
C20.019 (2)0.027 (3)0.014 (2)0.003 (2)0.0016 (19)0.003 (2)
C30.021 (3)0.041 (3)0.022 (3)0.013 (2)0.001 (2)0.003 (2)
C40.033 (3)0.038 (3)0.018 (2)0.011 (2)0.006 (2)0.002 (2)
C50.021 (3)0.021 (3)0.015 (2)0.004 (2)0.0047 (19)0.0034 (19)
C60.021 (3)0.028 (3)0.021 (2)0.007 (2)0.002 (2)0.005 (2)
C70.023 (3)0.025 (3)0.011 (2)0.004 (2)0.0062 (18)0.0035 (19)
C80.016 (2)0.035 (3)0.013 (2)0.008 (2)0.0029 (19)0.000 (2)
C90.019 (2)0.024 (3)0.015 (2)0.004 (2)0.0021 (19)0.003 (2)
C100.034 (3)0.032 (3)0.023 (3)0.017 (2)0.001 (2)0.005 (2)
C110.040 (3)0.040 (3)0.016 (2)0.022 (3)0.004 (2)0.001 (2)
C120.024 (3)0.022 (3)0.023 (2)0.001 (2)0.004 (2)0.006 (2)
C130.025 (3)0.034 (3)0.016 (2)0.016 (2)0.001 (2)0.001 (2)
C140.023 (3)0.025 (3)0.015 (2)0.007 (2)0.0029 (19)0.005 (2)
C150.016 (2)0.034 (3)0.022 (2)0.007 (2)0.008 (2)0.010 (2)
C160.024 (3)0.024 (3)0.019 (2)0.006 (2)0.002 (2)0.002 (2)
C170.033 (3)0.050 (4)0.026 (3)0.015 (3)0.002 (2)0.004 (3)
C180.045 (4)0.062 (4)0.024 (3)0.004 (3)0.004 (3)0.005 (3)
C190.055 (4)0.049 (4)0.022 (3)0.014 (3)0.007 (3)0.003 (3)
C200.042 (3)0.036 (3)0.023 (3)0.006 (3)0.012 (2)0.004 (2)
C210.032 (3)0.027 (3)0.021 (2)0.004 (2)0.009 (2)0.002 (2)
C220.031 (3)0.021 (3)0.028 (3)0.003 (2)0.008 (2)0.001 (2)
C230.052 (4)0.028 (3)0.039 (3)0.012 (3)0.017 (3)0.004 (2)
C240.066 (4)0.035 (3)0.050 (4)0.017 (3)0.033 (3)0.006 (3)
C250.065 (4)0.039 (4)0.036 (3)0.001 (3)0.019 (3)0.012 (3)
C260.068 (5)0.045 (4)0.063 (4)0.034 (3)0.027 (4)0.012 (3)
C270.056 (4)0.064 (4)0.047 (4)0.035 (3)0.011 (3)0.017 (3)
C280.045 (4)0.043 (4)0.028 (3)0.015 (3)0.010 (3)0.004 (3)
Co10.0226 (4)0.0293 (4)0.0144 (3)0.0090 (3)0.0007 (3)0.0016 (3)
Co20.0197 (4)0.0316 (4)0.0136 (3)0.0072 (3)0.0016 (3)0.0011 (3)
N10.032 (2)0.030 (2)0.023 (2)0.0107 (19)0.0061 (18)0.0034 (18)
N20.024 (2)0.035 (3)0.022 (2)0.0073 (19)0.0032 (18)0.0003 (19)
O10.0256 (19)0.041 (2)0.0142 (16)0.0109 (16)0.0018 (14)0.0061 (15)
O20.0232 (19)0.050 (2)0.0155 (16)0.0147 (16)0.0021 (14)0.0003 (15)
O30.057 (3)0.033 (2)0.032 (2)0.0186 (19)0.0175 (18)0.0101 (17)
O40.0182 (17)0.033 (2)0.0159 (15)0.0016 (14)0.0036 (13)0.0008 (14)
O50.030 (2)0.033 (2)0.0183 (16)0.0156 (16)0.0006 (14)0.0055 (15)
O60.0196 (18)0.039 (2)0.0164 (16)0.0134 (15)0.0035 (14)0.0042 (15)
O70.047 (2)0.024 (2)0.0256 (18)0.0012 (17)0.0046 (16)0.0016 (16)
O80.0254 (18)0.0271 (19)0.0116 (15)0.0054 (14)0.0011 (13)0.0031 (14)
O90.052 (2)0.033 (2)0.0264 (18)0.0014 (17)0.0126 (17)0.0021 (16)
O100.031 (2)0.030 (2)0.0276 (18)0.0052 (15)0.0039 (15)0.0027 (15)
O110.104 (4)0.038 (3)0.184 (5)0.023 (3)0.094 (4)0.031 (3)
Geometric parameters (Å, º) top
C1—O21.260 (5)C19—H190.9300
C1—O11.262 (5)C20—C211.404 (6)
C1—C21.495 (6)C20—C251.437 (7)
C1—Co2i2.467 (4)C21—N21.357 (6)
C2—C31.381 (6)C21—C221.437 (6)
C2—C71.402 (6)C22—N11.358 (5)
C3—C41.379 (6)C22—C231.399 (7)
C3—H30.9300C23—C261.398 (7)
C4—C51.383 (6)C23—C241.424 (7)
C4—H40.9300C24—C251.337 (8)
C5—C61.389 (6)C24—H240.9300
C5—C91.491 (5)C25—H250.9300
C6—C71.390 (6)C26—C271.354 (7)
C6—H60.9300C26—H260.9300
C7—C81.509 (6)C27—C281.389 (7)
C8—O31.229 (5)C27—H270.9300
C8—O41.283 (5)C28—N11.322 (6)
C9—C161.374 (6)C28—H280.9300
C9—C101.386 (6)Co1—O5ii2.001 (3)
C10—C111.393 (6)Co1—N12.108 (4)
C10—H100.9300Co1—O8iii2.117 (3)
C11—C121.373 (6)Co1—N22.143 (4)
C11—H110.9300Co1—O102.144 (3)
C12—C141.388 (6)Co1—O42.149 (3)
C12—C131.508 (6)Co2—O6ii2.025 (3)
C13—O71.241 (5)Co2—O42.080 (3)
C13—O81.273 (5)Co2—O1i2.088 (3)
C14—C161.387 (6)Co2—O92.127 (3)
C14—C151.493 (6)Co2—O2i2.184 (3)
C15—O51.253 (5)Co2—O8iii2.210 (3)
C15—O61.269 (5)Co2—C1i2.467 (4)
C16—H160.9300O9—H9A0.8500
C17—N21.318 (6)O9—H9B0.8499
C17—C181.399 (6)O10—H10A0.8499
C17—H170.9300O10—H10B0.8501
C18—C191.359 (8)O11—H11A0.8520
C18—H180.9300O11—H11B0.8548
C19—C201.402 (7)
O2—C1—O1119.9 (4)C25—C24—H24119.3
O2—C1—C2119.5 (4)C23—C24—H24119.3
O1—C1—C2120.6 (4)C24—C25—C20121.3 (5)
O2—C1—Co2i62.1 (2)C24—C25—H25119.3
O1—C1—Co2i57.8 (2)C20—C25—H25119.3
C2—C1—Co2i177.7 (3)C27—C26—C23120.1 (5)
C3—C2—C7118.1 (4)C27—C26—H26119.9
C3—C2—C1119.1 (4)C23—C26—H26119.9
C7—C2—C1122.6 (4)C26—C27—C28119.6 (5)
C4—C3—C2121.7 (4)C26—C27—H27120.2
C4—C3—H3119.1C28—C27—H27120.2
C2—C3—H3119.1N1—C28—C27122.6 (5)
C3—C4—C5121.6 (4)N1—C28—H28118.7
C3—C4—H4119.2C27—C28—H28118.7
C5—C4—H4119.2O5ii—Co1—N1161.87 (14)
C4—C5—C6116.5 (4)O5ii—Co1—O8iii97.71 (11)
C4—C5—C9121.9 (4)N1—Co1—O8iii96.93 (13)
C6—C5—C9121.6 (4)O5ii—Co1—N288.47 (13)
C5—C6—C7123.2 (4)N1—Co1—N277.93 (14)
C5—C6—H6118.4O8iii—Co1—N2172.24 (13)
C7—C6—H6118.4O5ii—Co1—O1086.77 (13)
C6—C7—C2118.9 (4)N1—Co1—O10104.03 (14)
C6—C7—C8116.8 (4)O8iii—Co1—O1089.41 (11)
C2—C7—C8124.2 (4)N2—Co1—O1086.25 (13)
O3—C8—O4124.7 (4)O5ii—Co1—O487.22 (13)
O3—C8—C7117.0 (4)N1—Co1—O486.00 (14)
O4—C8—C7118.2 (4)O8iii—Co1—O476.00 (11)
C16—C9—C10117.5 (4)N2—Co1—O4109.13 (13)
C16—C9—C5121.9 (4)O10—Co1—O4163.32 (11)
C10—C9—C5120.6 (4)O6ii—Co2—O498.38 (11)
C9—C10—C11121.0 (4)O6ii—Co2—O1i153.17 (12)
C9—C10—H10119.5O4—Co2—O1i107.16 (12)
C11—C10—H10119.5O6ii—Co2—O989.10 (13)
C12—C11—C10120.7 (4)O4—Co2—O993.31 (12)
C12—C11—H11119.7O1i—Co2—O997.35 (13)
C10—C11—H11119.7O6ii—Co2—O2i93.38 (11)
C11—C12—C14119.0 (4)O4—Co2—O2i168.19 (12)
C11—C12—C13116.7 (4)O1i—Co2—O2i61.42 (11)
C14—C12—C13124.3 (4)O9—Co2—O2i85.65 (12)
O7—C13—O8124.2 (4)O6ii—Co2—O8iii89.12 (12)
O7—C13—C12116.5 (4)O4—Co2—O8iii75.45 (11)
O8—C13—C12119.0 (4)O1i—Co2—O8iii89.44 (12)
C16—C14—C12119.4 (4)O9—Co2—O8iii168.23 (11)
C16—C14—C15117.9 (4)O2i—Co2—O8iii106.07 (12)
C12—C14—C15122.6 (4)O6ii—Co2—C1i123.70 (13)
O5—C15—O6125.4 (4)O4—Co2—C1i137.77 (14)
O5—C15—C14117.5 (4)O1i—Co2—C1i30.76 (13)
O6—C15—C14117.0 (4)O9—Co2—C1i90.96 (13)
C9—C16—C14122.4 (4)O2i—Co2—C1i30.68 (13)
C9—C16—H16118.8O8iii—Co2—C1i99.70 (13)
C14—C16—H16118.8C28—N1—C22117.8 (4)
N2—C17—C18123.2 (5)C28—N1—Co1127.4 (3)
N2—C17—H17118.4C22—N1—Co1114.3 (3)
C18—C17—H17118.4C17—N2—C21117.7 (4)
C19—C18—C17119.3 (5)C17—N2—Co1128.8 (3)
C19—C18—H18120.4C21—N2—Co1113.5 (3)
C17—C18—H18120.4C1—O1—Co2i91.4 (3)
C18—C19—C20119.6 (5)C1—O2—Co2i87.2 (3)
C18—C19—H19120.2C8—O4—Co2125.8 (3)
C20—C19—H19120.2C8—O4—Co1128.5 (3)
C19—C20—C21117.1 (5)Co2—O4—Co198.35 (12)
C19—C20—C25124.6 (5)C15—O5—Co1ii131.1 (3)
C21—C20—C25118.3 (5)C15—O6—Co2ii127.3 (3)
N2—C21—C20123.1 (5)C13—O8—Co1iv121.5 (3)
N2—C21—C22116.8 (4)C13—O8—Co2iv142.9 (3)
C20—C21—C22120.1 (5)Co1iv—O8—Co2iv95.37 (11)
N1—C22—C23123.3 (5)Co2—O9—H9A128.0
N1—C22—C21117.4 (4)Co2—O9—H9B124.2
C23—C22—C21119.3 (4)H9A—O9—H9B107.7
C26—C23—C22116.5 (5)Co1—O10—H10A123.2
C26—C23—C24124.1 (5)Co1—O10—H10B113.4
C22—C23—C24119.4 (5)H10A—O10—H10B107.7
C25—C24—C23121.4 (5)H11A—O11—H11B107.1
O2—C1—C2—C36.6 (7)C26—C27—C28—N11.6 (9)
O1—C1—C2—C3172.6 (4)C27—C28—N1—C222.8 (8)
O2—C1—C2—C7178.3 (4)C27—C28—N1—Co1174.4 (4)
O1—C1—C2—C72.5 (7)C23—C22—N1—C283.7 (7)
C7—C2—C3—C41.1 (7)C21—C22—N1—C28173.6 (4)
C1—C2—C3—C4176.4 (4)C23—C22—N1—Co1176.4 (4)
C2—C3—C4—C50.5 (8)C21—C22—N1—Co10.9 (5)
C3—C4—C5—C61.4 (7)O5ii—Co1—N1—C28129.0 (5)
C3—C4—C5—C9179.3 (4)O8iii—Co1—N1—C2814.7 (4)
C4—C5—C6—C70.6 (7)N2—Co1—N1—C28171.2 (5)
C9—C5—C6—C7179.9 (4)O10—Co1—N1—C28105.8 (4)
C5—C6—C7—C21.0 (7)O4—Co1—N1—C2860.7 (4)
C5—C6—C7—C8175.6 (4)O5ii—Co1—N1—C2242.8 (6)
C3—C2—C7—C61.9 (7)O8iii—Co1—N1—C22173.5 (3)
C1—C2—C7—C6176.9 (4)N2—Co1—N1—C220.6 (3)
C3—C2—C7—C8174.5 (4)O10—Co1—N1—C2282.4 (3)
C1—C2—C7—C80.6 (7)O4—Co1—N1—C22111.2 (3)
C6—C7—C8—O368.8 (6)C18—C17—N2—C210.8 (7)
C2—C7—C8—O3107.7 (5)C18—C17—N2—Co1176.4 (4)
C6—C7—C8—O4109.2 (5)C20—C21—N2—C170.4 (7)
C2—C7—C8—O474.4 (6)C22—C21—N2—C17179.0 (4)
C4—C5—C9—C16168.3 (5)C20—C21—N2—Co1178.1 (4)
C6—C5—C9—C1610.9 (7)C22—C21—N2—Co13.3 (5)
C4—C5—C9—C109.3 (7)O5ii—Co1—N2—C1712.6 (4)
C6—C5—C9—C10171.5 (4)N1—Co1—N2—C17179.5 (5)
C16—C9—C10—C110.6 (7)O10—Co1—N2—C1774.3 (4)
C5—C9—C10—C11178.3 (4)O4—Co1—N2—C1799.1 (4)
C9—C10—C11—C120.8 (8)O5ii—Co1—N2—C21170.1 (3)
C10—C11—C12—C141.1 (7)N1—Co1—N2—C212.1 (3)
C10—C11—C12—C13178.9 (4)O10—Co1—N2—C21103.1 (3)
C11—C12—C13—O765.5 (6)O4—Co1—N2—C2183.5 (3)
C14—C12—C13—O7114.5 (5)O2—C1—O1—Co2i2.7 (4)
C11—C12—C13—O8108.9 (5)C2—C1—O1—Co2i178.1 (4)
C14—C12—C13—O871.1 (6)O1—C1—O2—Co2i2.6 (4)
C11—C12—C14—C161.2 (7)C2—C1—O2—Co2i178.2 (4)
C13—C12—C14—C16178.8 (4)O3—C8—O4—Co228.2 (6)
C11—C12—C14—C15177.6 (4)C7—C8—O4—Co2154.1 (3)
C13—C12—C14—C152.4 (7)O3—C8—O4—Co1115.2 (4)
C16—C14—C15—O521.1 (6)C7—C8—O4—Co162.6 (5)
C12—C14—C15—O5160.0 (4)O6ii—Co2—O4—C893.6 (3)
C16—C14—C15—O6157.3 (4)O1i—Co2—O4—C894.8 (3)
C12—C14—C15—O621.6 (7)O9—Co2—O4—C84.0 (3)
C10—C9—C16—C140.8 (7)O2i—Co2—O4—C880.6 (7)
C5—C9—C16—C14178.5 (4)O8iii—Co2—O4—C8179.6 (3)
C12—C14—C16—C91.1 (7)C1i—Co2—O4—C891.1 (4)
C15—C14—C16—C9177.8 (4)O6ii—Co2—O4—Co158.29 (14)
N2—C17—C18—C191.0 (8)O1i—Co2—O4—Co1113.39 (13)
C17—C18—C19—C200.0 (8)O9—Co2—O4—Co1147.87 (13)
C18—C19—C20—C211.1 (8)O2i—Co2—O4—Co1127.6 (6)
C18—C19—C20—C25177.9 (5)O8iii—Co2—O4—Co128.59 (11)
C19—C20—C21—N21.4 (7)C1i—Co2—O4—Co1117.05 (18)
C25—C20—C21—N2177.8 (5)O5ii—Co1—O4—C882.0 (4)
C19—C20—C21—C22179.9 (4)N1—Co1—O4—C881.2 (4)
C25—C20—C21—C220.8 (7)O8iii—Co1—O4—C8179.4 (4)
N2—C21—C22—N12.9 (6)N2—Co1—O4—C85.5 (4)
C20—C21—C22—N1178.4 (4)O10—Co1—O4—C8150.9 (4)
N2—C21—C22—C23174.5 (5)O5ii—Co1—O4—Co268.77 (12)
C20—C21—C22—C234.1 (7)N1—Co1—O4—Co2128.06 (14)
N1—C22—C23—C263.2 (8)O8iii—Co1—O4—Co229.89 (11)
C21—C22—C23—C26174.1 (5)N2—Co1—O4—Co2156.19 (13)
N1—C22—C23—C24178.6 (5)O10—Co1—O4—Co20.2 (5)
C21—C22—C23—C244.2 (8)O6—C15—O5—Co1ii16.8 (7)
C26—C23—C24—C25177.3 (6)C14—C15—O5—Co1ii165.0 (3)
C22—C23—C24—C250.8 (9)O5—C15—O6—Co2ii10.6 (7)
C23—C24—C25—C202.6 (9)C14—C15—O6—Co2ii167.6 (3)
C19—C20—C25—C24176.4 (5)O7—C13—O8—Co1iv3.7 (6)
C21—C20—C25—C242.6 (8)C12—C13—O8—Co1iv170.3 (3)
C22—C23—C26—C271.8 (9)O7—C13—O8—Co2iv176.9 (3)
C24—C23—C26—C27180.0 (6)C12—C13—O8—Co2iv3.0 (7)
C23—C26—C27—C281.1 (9)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O7ii0.852.042.886 (6)173
O11—H11A···O7v0.852.152.931 (5)152
O10—H10B···O7iii0.852.202.668 (4)115
O10—H10A···O2vi0.851.952.756 (4)159
O9—H9A···O30.852.092.661 (4)124
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y, z1; (v) x, y1, z1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co2(C16H6O8)(C12H8N2)(H2O)2]·H2O
Mr678.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.793 (3), 10.885 (3), 12.453 (3)
α, β, γ (°)97.567 (4), 102.608 (4), 95.653 (4)
V3)1273.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.40 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.609, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
6716, 4641, 3194
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.113, 0.98
No. of reflections4641
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O7i0.852.042.886 (6)172.9
O11—H11A···O7ii0.852.152.931 (5)152.0
O10—H10B···O7iii0.852.202.668 (4)114.9
O10—H10A···O2iv0.851.952.756 (4)158.5
O9—H9A···O30.852.092.661 (4)124.1
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1, z1; (iii) x, y, z1; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the National Key Fundamental Research Development Project (973 Project: No. 2010CB226905) and the Fundamental Research Funds for the Central Universities (No. 09CX04045A).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKonar, S., Zangrando, E., Drew, M. G. B., Ribas, J. & Chaudhuri, N. R. (2004). Dalton Trans. pp. 260–266.  Web of Science CSD CrossRef Google Scholar
First citationRowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670–4679.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S. R., Zhang, H., Shao, M., Zhao, Y. M. & Li, M. X. (2008). Transition Met. Chem. 33, 669–680.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds