metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­methyl-1,1′-(propane-1,3-di­yl)diimidazol-1-ium bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato-κ2S,S′)nickelate(II)

aDepartment of Chemistry, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China, bSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China, and cCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: duanhaibao4660@163.com

(Received 4 June 2011; accepted 11 July 2011; online 23 July 2011)

In the title compound, (C11H18N4)[Ni(C4N2S2)2], the asymmetric contains one half-complex, with the cation placed on a twofold axis and the anion located on an inversion center. The NiII ion in the anion is coordinated by four S atoms of two maleonitrile­dithiol­ate ligands, and exhibits the expected square-planar coordination geometry.

Related literature

For the design of functional materials, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]). For near-infrared dyes, conducting, magnetic and non-linear optical materials, see: Nishijo et al. (2000[Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2000). Solid State Commun. 116, 661-664.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]). For related structures, see: Ni et al. (2004[Ni, C. L., Dang, D. B., Song, Y., Gao, S., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353-358.]); Ren et al. (2004[Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569-2576.], 2008[Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009-8014.]); Duan et al. (2010[Duan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509-1522.]); For the synthesis of the title compound, see: Davison & Holm (1967[Davison, A. & Holm, R. H. (1967). Inorg. Synth. 10, 8-26.]); Yao et al. (2008[Yao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833-2844.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H18N4)[Ni(C4N2S2)2]

  • Mr = 545.38

  • Monoclinic, C 2/c

  • a = 19.3683 (15) Å

  • b = 7.3026 (6) Å

  • c = 17.5170 (14) Å

  • β = 104.167 (1)°

  • V = 2402.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.3 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.702, Tmax = 0.741

  • 7551 measured reflections

  • 2938 independent reflections

  • 2503 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.06

  • 2938 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular chemistry and molecular crystal engineering, which is the planning and utilization of crystal-oriented syntheses for the bottom-up construction of functional molecular solids from molecules and ions, are powerful tools for the assembly of designed functional materials (Robertson & Cronin, 2002). The use of bis-1,2-dithiolene complexes of transition metals as building units in the construction of such molecule based materials has received extensive attention due to their potential applications in the areas of near-infrared (near-IR) dyes, conducting, magnetic and nonlinear optical materials (Nishijo et al., 2000; Ni et al., 2005). Herein we report the crystal structure of the title compound (Fig. 1), which belongs to this class of materials.

The compound crystallizes in monoclinic system, with one half of [Ni(mnt)2]2- dianion (mnt = maleonitriledithiolate) and one half of 3,3-dimethyl-1,1-(propane-1,3-diyl)diimidazol-1-ium dication in the asymmetric unit. The Ni center in the [Ni(mnt)2]2- anion is coordinated by four S atoms of two mnt2- ligands, and exhibits the expected square-planar coordination geometry. The bond lengths and angles in the anion are in good agreement with those observed in other [Ni(mnt)2]2- complexes (Ni et al., 2004; Ren et al., 2004, 2008; Duan et al., 2010).

Related literature top

For the design of functional materials, see: Robertson & Cronin (2002). For near-infrared dyes, conducting, magnetic and non-linear optical materials, see: Nishijo et al. (2000); Ni et al. (2005). For related structures, see: Ni et al. (2004); Ren et al. (2004, 2008); Duan et al. (2010); For the synthesis of the title compound, see: Davison & Holm (1967); Yao et al. (2008).

Experimental top

All reagents and chemicals were purchased from commercial sources and used without further purification. The starting materials disodium maleonitriledithiolate and 1-methyl-3-(3-(1-methyl-imidazole-3-yl)propyl)-imidazolinium iodide were synthesized following the literature procedures (Davison & Holm, 1967; Yao et al., 2008). Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) at room temperature. Subsequently, a solution of 1-methyl-3-(3-(1-methyl-imidazole-3-yl)propyl)-imidazolinium iodide (1.5 mmol) in methanol (10 ml) was added to the mixture, and the red precipitate that immediately formed was filtered off, and washed with methanol. The crude product was recrystallized in acetone (20 ml) to give red block crystals.

Refinement top

The C-bound H atoms were placed in geometrically idealized positions with C—H bond lengths fixed to 0.97 (methylene CH2) 0.96 (methyl CH3), and 0.93 Å (aromatic CH), and refined as riding atoms. Isotropic displacement parameters of the H atom were set at Uiso(H) = 1.2Ueq(C) for methylene and aromatic H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level.
3,3'-Dimethyl-1,1'-(propane-1,3-diyl)diimidazol-1-ium bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C11H18N4)[Ni(C4N2S2)2]Z = 4
Mr = 545.38F(000) = 1120.0
Monoclinic, C2/cDx = 1.508 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.3683 (15) ŵ = 1.18 mm1
b = 7.3026 (6) ÅT = 293 K
c = 17.5170 (14) ÅBlock, red
β = 104.167 (1)°0.4 × 0.3 × 0.3 mm
V = 2402.2 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2938 independent reflections
Radiation source: fine-focus sealed tube2503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1925
Tmin = 0.702, Tmax = 0.741k = 89
7551 measured reflectionsl = 2316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.2056P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
(C11H18N4)[Ni(C4N2S2)2]V = 2402.2 (3) Å3
Mr = 545.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.3683 (15) ŵ = 1.18 mm1
b = 7.3026 (6) ÅT = 293 K
c = 17.5170 (14) Å0.4 × 0.3 × 0.3 mm
β = 104.167 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2503 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.741Rint = 0.067
7551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2938 reflectionsΔρmin = 0.68 e Å3
147 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.25000.75000.00000.03604 (12)
S10.34431 (2)0.65936 (7)0.08669 (3)0.04682 (15)
S20.18479 (2)0.72779 (7)0.08353 (3)0.04539 (14)
N10.40853 (10)0.5664 (3)0.29918 (11)0.0762 (6)
N20.19161 (11)0.6190 (3)0.28956 (11)0.0698 (5)
N30.61640 (10)0.7743 (2)1.00222 (10)0.0491 (4)
N40.54547 (9)0.8708 (2)0.89552 (10)0.0576 (4)
C10.36589 (10)0.5949 (3)0.24289 (11)0.0516 (4)
C20.31437 (9)0.6359 (2)0.17168 (10)0.0416 (4)
C30.24477 (9)0.6629 (2)0.17021 (10)0.0401 (4)
C40.21663 (10)0.6392 (3)0.23745 (11)0.0492 (4)
C50.61229 (10)0.8655 (3)0.93644 (11)0.0475 (4)
H5A0.65060.91800.92120.057*
C60.68163 (15)0.7392 (3)1.06347 (14)0.0661 (7)
H6A0.72130.79621.04910.099*
H6B0.68960.60961.06890.099*
H6C0.67670.78891.11260.099*
C70.55032 (15)0.7161 (4)1.00398 (16)0.0803 (8)
H7A0.53800.64741.04340.096*
C80.50654 (15)0.7773 (5)0.9379 (2)0.0919 (10)
H8A0.45750.75920.92310.110*
C90.52021 (13)0.9711 (3)0.82143 (13)0.0750 (7)
H9A0.55731.05470.81500.090*
H9B0.47921.04390.82480.090*
C100.50000.8508 (4)0.75000.0559 (7)
H10A0.46020.77310.75320.067*0.50
H10B0.53980.77310.74680.067*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03490 (18)0.03872 (19)0.03238 (19)0.00051 (11)0.00419 (13)0.00245 (11)
S10.0380 (2)0.0625 (3)0.0377 (2)0.00491 (19)0.00505 (18)0.0005 (2)
S20.0379 (2)0.0577 (3)0.0397 (3)0.00376 (18)0.00789 (19)0.00350 (19)
N10.0665 (12)0.1072 (17)0.0468 (10)0.0188 (12)0.0018 (9)0.0070 (11)
N20.0691 (11)0.0954 (14)0.0488 (10)0.0063 (11)0.0220 (9)0.0090 (10)
N30.0537 (9)0.0483 (9)0.0413 (9)0.0086 (7)0.0039 (7)0.0020 (7)
N40.0479 (9)0.0663 (10)0.0497 (9)0.0038 (8)0.0049 (7)0.0074 (8)
C10.0493 (10)0.0627 (11)0.0406 (9)0.0054 (9)0.0065 (8)0.0019 (9)
C20.0462 (9)0.0413 (8)0.0344 (8)0.0003 (7)0.0042 (7)0.0017 (7)
C30.0459 (9)0.0382 (8)0.0346 (8)0.0023 (7)0.0069 (7)0.0022 (7)
C40.0503 (10)0.0539 (10)0.0423 (10)0.0019 (8)0.0091 (8)0.0012 (8)
C50.0454 (9)0.0498 (10)0.0423 (10)0.0046 (8)0.0012 (7)0.0019 (8)
C60.0740 (15)0.0568 (13)0.0549 (14)0.0002 (10)0.0086 (12)0.0085 (9)
C70.0686 (16)0.112 (2)0.0614 (15)0.0278 (15)0.0177 (13)0.0053 (14)
C80.0446 (12)0.140 (3)0.087 (2)0.0210 (14)0.0079 (13)0.0053 (19)
C90.0783 (15)0.0643 (13)0.0611 (13)0.0102 (12)0.0238 (12)0.0046 (11)
C100.0481 (14)0.0592 (17)0.0525 (16)0.0000.0027 (12)0.000
Geometric parameters (Å, º) top
Ni1—S2i2.1603 (5)C2—C31.356 (3)
Ni1—S22.1603 (5)C3—C41.424 (3)
Ni1—S12.1732 (4)C5—H5A0.9300
Ni1—S1i2.1732 (4)C6—H6A0.9600
S1—C21.7334 (18)C6—H6B0.9600
S2—C31.7369 (17)C6—H6C0.9600
N1—C11.140 (2)C7—C81.334 (4)
N2—C41.143 (3)C7—H7A0.9300
N3—C51.316 (2)C8—H8A0.9300
N3—C71.356 (3)C9—C101.500 (3)
N3—C61.466 (3)C9—H9A0.9700
N4—C51.318 (2)C9—H9B0.9700
N4—C81.364 (4)C10—C9ii1.500 (3)
N4—C91.466 (3)C10—H10A0.9700
C1—C21.426 (2)C10—H10B0.9700
S2i—Ni1—S2180.00 (3)N3—C6—H6A109.5
S2i—Ni1—S188.018 (18)N3—C6—H6B109.5
S2—Ni1—S191.983 (18)H6A—C6—H6B109.5
S2i—Ni1—S1i91.983 (18)N3—C6—H6C109.5
S2—Ni1—S1i88.017 (18)H6A—C6—H6C109.5
S1—Ni1—S1i180.000 (17)H6B—C6—H6C109.5
C2—S1—Ni1103.27 (6)C8—C7—N3106.2 (2)
C3—S2—Ni1103.64 (6)C8—C7—H7A126.9
C5—N3—C7108.85 (19)N3—C7—H7A126.9
C5—N3—C6125.85 (19)C7—C8—N4108.8 (2)
C7—N3—C6125.3 (2)C7—C8—H8A125.6
C5—N4—C8106.8 (2)N4—C8—H8A125.6
C5—N4—C9124.5 (2)N4—C9—C10114.08 (19)
C8—N4—C9128.5 (2)N4—C9—H9A108.7
N1—C1—C2177.7 (2)C10—C9—H9A108.7
C3—C2—C1121.79 (17)N4—C9—H9B108.7
C3—C2—S1120.62 (13)C10—C9—H9B108.7
C1—C2—S1117.55 (14)H9A—C9—H9B107.6
C2—C3—C4123.12 (16)C9—C10—C9ii108.3 (3)
C2—C3—S2120.34 (14)C9—C10—H10A110.0
C4—C3—S2116.53 (14)C9ii—C10—H10A110.0
N2—C4—C3177.4 (2)C9—C10—H10B110.0
N3—C5—N4109.39 (19)C9ii—C10—H10B110.0
N3—C5—H5A125.3H10A—C10—H10B108.4
N4—C5—H5A125.3
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula(C11H18N4)[Ni(C4N2S2)2]
Mr545.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)19.3683 (15), 7.3026 (6), 17.5170 (14)
β (°) 104.167 (1)
V3)2402.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.4 × 0.3 × 0.3
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.702, 0.741
No. of measured, independent and
observed [I > 2σ(I)] reflections
7551, 2938, 2503
Rint0.067
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.06
No. of reflections2938
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.68

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of High Learning Institutions of Abhui Province, China for financial support (grant Nos. KJ2009B275Z).

References

First citationBruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavison, A. & Holm, R. H. (1967). Inorg. Synth. 10, 8–26.  CrossRef CAS Google Scholar
First citationDuan, H.-B., Ren, X.-M. & Meng, Q.-J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationNi, C. L., Dang, D. B., Song, Y., Gao, S., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Iyoda, M. (2000). Solid State Commun. 116, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009–8014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833–2844.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds