organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl­anilinium 2-carb­­oxy­ethano­ate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: rongtao198806@163.com

(Received 24 June 2011; accepted 29 June 2011; online 6 July 2011)

The anion of the title molecular salt, C9H14N+·C3H3O4, features an intra­molecular O—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O inter­actions link each cation to three different anions.

Related literature

For general background to ferroelectric organic frameworks, see: Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.], 2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]). For phase transition of ferroelectric materials, see: Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]); Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·C3H3O4

  • Mr = 239.27

  • Orthorhombic, P b c n

  • a = 13.732 (3) Å

  • b = 7.8522 (16) Å

  • c = 23.124 (5) Å

  • V = 2493.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.981

  • 23089 measured reflections

  • 2856 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.166

  • S = 1.05

  • 2856 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.99 (4) 1.46 (4) 2.421 (3) 160 (3)
N1—H1A⋯O4i 0.89 2.02 2.879 (3) 162
N1—H1A⋯O3i 0.89 2.51 3.248 (3) 140
N1—H1B⋯O1ii 0.89 2.09 2.826 (3) 140
N1—H1B⋯O4iii 0.89 2.58 3.075 (3) 116
N1—H1C⋯O2iv 0.89 1.92 2.798 (3) 167
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the crystal structure, one hydrogen –bonding network of N-H···O hydrogen bonds which established between ammonium groups and hydrogen malonateions, and one kind of intramolecular hydrogen bond O3—H···O1 which established between O3 and O1 contribute to the stability of crystal packing.

In the structure, atom N1 is hydrogen bonded to O atoms of hydrogen malonate ions through hydrogen bonds.

The study of ferroelectric materials has received much attention. Some materials have predominantly dielectric-ferroelectric properties. The title compound was studied as part of our work to obtain potential ferroelectric phase-transition materials (Ye et al., 2006; Fu et al., 2007; Zhao et al. 2008; Zhang et al., 2008; Ye et al., 2009). Unluckily, the compound has no dielectric anomalies in the temperature range 93–453 K, suggesting that it might be only a paraelectric.

Related literature top

For general background to ferroelectric organic frameworks, see: Ye et al. (2006, 2009); Fu et al. (2007). F for phase transition of ferroelectric materials, see: Zhang et al. (2008); Zhao et al. (2008).

Experimental top

For the preparation of the title compound, the Malonate(0.5 g) was added to the ehanol solution of the 2,4,6-trimethylaniline, The resulting precipitate was filtered. Colorless crystals suitable for X-ray analysis were formed after several weeks by solw evaporation of the solvent at room temperature.

Refinement top

Positional parameters of all the H atoms bonded to C and N atoms were calculated geometrically and were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C,N). The H atom bond to O3 was freely refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme.Displacement ellipsoids are drawn at the 30%
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
2,4,6-Trimethylanilinium 2-carboxyethanoate top
Crystal data top
C9H14N+·C3H3O4F(000) = 1024
Mr = 239.27Dx = 1.275 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2856 reflections
a = 13.732 (3) Åθ = 3.0–27.5°
b = 7.8522 (16) ŵ = 0.10 mm1
c = 23.124 (5) ÅT = 293 K
V = 2493.3 (9) Å3Prism, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2856 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.981, Tmax = 0.981l = 3030
23089 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.8663P]
where P = (Fo2 + 2Fc2)/3
2856 reflections(Δ/σ)max = 0.006
162 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H14N+·C3H3O4V = 2493.3 (9) Å3
Mr = 239.27Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 13.732 (3) ŵ = 0.10 mm1
b = 7.8522 (16) ÅT = 293 K
c = 23.124 (5) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2856 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1643 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.981Rint = 0.096
23089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
2856 reflectionsΔρmin = 0.25 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4717 (2)0.2519 (3)0.49208 (11)0.0488 (7)
C20.5594 (2)0.2379 (3)0.52056 (11)0.0504 (7)
H20.61610.26280.50030.060*
C30.56763 (18)0.1886 (3)0.57795 (10)0.0390 (6)
C40.48162 (17)0.1522 (3)0.60667 (9)0.0309 (5)
C50.39102 (18)0.1613 (3)0.58021 (10)0.0385 (6)
C60.3885 (2)0.2122 (4)0.52297 (11)0.0507 (7)
H60.32850.22000.50450.061*
C70.4666 (3)0.3072 (4)0.42944 (12)0.0738 (10)
H7A0.46390.42920.42750.111*
H7B0.40930.26010.41180.111*
H7C0.52330.26730.40930.111*
C80.6659 (2)0.1771 (5)0.60677 (13)0.0646 (9)
H8A0.71560.20950.57980.097*
H8B0.67700.06230.61940.097*
H8C0.66750.25230.63950.097*
C90.2980 (2)0.1207 (4)0.61237 (13)0.0593 (8)
H9A0.30040.00550.62620.089*
H9B0.24340.13370.58680.089*
H9C0.29100.19710.64450.089*
C100.11880 (17)1.0449 (3)0.23443 (10)0.0344 (6)
C110.15426 (18)0.9020 (3)0.27175 (10)0.0364 (6)
H11A0.12840.91900.31040.044*
H11B0.22460.91070.27440.044*
C120.12942 (17)0.7225 (3)0.25311 (13)0.0401 (6)
H30.092 (3)0.881 (5)0.1813 (14)0.093 (12)*
N10.48497 (14)0.1025 (2)0.66800 (8)0.0331 (5)
H1A0.45880.18470.68950.050*
H1B0.54660.08620.67860.050*
H1C0.45150.00650.67300.050*
O10.13547 (14)0.6067 (2)0.28835 (10)0.0624 (6)
O20.10416 (16)0.7039 (2)0.19982 (9)0.0600 (6)
O30.08869 (16)1.0069 (3)0.18287 (8)0.0581 (6)
O40.11846 (14)1.1927 (2)0.25102 (8)0.0512 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (2)0.0448 (16)0.0310 (15)0.0047 (15)0.0011 (13)0.0036 (12)
C20.0576 (18)0.0562 (18)0.0374 (16)0.0033 (15)0.0122 (13)0.0065 (13)
C30.0417 (14)0.0415 (15)0.0338 (14)0.0005 (12)0.0037 (11)0.0027 (11)
C40.0416 (14)0.0245 (12)0.0267 (12)0.0015 (10)0.0033 (10)0.0006 (9)
C50.0404 (15)0.0372 (14)0.0379 (15)0.0017 (12)0.0008 (11)0.0031 (11)
C60.0525 (17)0.0608 (18)0.0387 (16)0.0050 (14)0.0126 (13)0.0068 (13)
C70.112 (3)0.078 (2)0.0314 (16)0.006 (2)0.0023 (16)0.0119 (16)
C80.0426 (16)0.096 (3)0.0556 (19)0.0059 (17)0.0061 (14)0.0155 (17)
C90.0401 (16)0.079 (2)0.0588 (19)0.0012 (16)0.0002 (13)0.0134 (16)
C100.0336 (13)0.0334 (14)0.0363 (14)0.0009 (11)0.0002 (11)0.0007 (11)
C110.0395 (13)0.0313 (13)0.0386 (14)0.0022 (11)0.0035 (11)0.0027 (11)
C120.0257 (12)0.0301 (13)0.0644 (19)0.0020 (11)0.0089 (12)0.0039 (13)
N10.0402 (11)0.0301 (10)0.0288 (11)0.0024 (9)0.0028 (8)0.0020 (9)
O10.0539 (13)0.0328 (11)0.1006 (17)0.0015 (9)0.0110 (11)0.0256 (11)
O20.0772 (15)0.0394 (11)0.0633 (14)0.0112 (10)0.0046 (11)0.0167 (10)
O30.0844 (15)0.0489 (13)0.0410 (12)0.0060 (11)0.0167 (10)0.0007 (9)
O40.0643 (13)0.0296 (10)0.0596 (12)0.0075 (9)0.0051 (9)0.0011 (9)
Geometric parameters (Å, º) top
C1—C21.376 (4)C8—H8C0.9600
C1—C61.384 (4)C9—H9A0.9600
C1—C71.514 (4)C9—H9B0.9600
C2—C31.387 (3)C9—H9C0.9600
C2—H20.9300C10—O41.222 (3)
C3—C41.385 (3)C10—O31.297 (3)
C3—C81.507 (4)C10—C111.497 (3)
C4—C51.388 (3)C11—C121.513 (3)
C4—N11.472 (3)C11—H11A0.9700
C5—C61.383 (3)C11—H11B0.9700
C5—C91.512 (4)C12—O11.224 (3)
C6—H60.9300C12—O21.289 (3)
C7—H7A0.9600N1—H1A0.8900
C7—H7B0.9600N1—H1B0.8900
C7—H7C0.9600N1—H1C0.8900
C8—H8A0.9600O3—H30.99 (4)
C8—H8B0.9600
C2—C1—C6117.2 (2)H8A—C8—H8C109.5
C2—C1—C7121.4 (3)H8B—C8—H8C109.5
C6—C1—C7121.3 (3)C5—C9—H9A109.5
C1—C2—C3123.5 (3)C5—C9—H9B109.5
C1—C2—H2118.3H9A—C9—H9B109.5
C3—C2—H2118.3C5—C9—H9C109.5
C4—C3—C2116.5 (2)H9A—C9—H9C109.5
C4—C3—C8122.6 (2)H9B—C9—H9C109.5
C2—C3—C8120.9 (2)O4—C10—O3120.4 (2)
C3—C4—C5122.8 (2)O4—C10—C11122.1 (2)
C3—C4—N1119.4 (2)O3—C10—C11117.5 (2)
C5—C4—N1117.8 (2)C10—C11—C12117.4 (2)
C6—C5—C4117.3 (2)C10—C11—H11A107.9
C6—C5—C9120.7 (2)C12—C11—H11A107.9
C4—C5—C9122.0 (2)C10—C11—H11B107.9
C5—C6—C1122.6 (2)C12—C11—H11B107.9
C5—C6—H6118.7H11A—C11—H11B107.2
C1—C6—H6118.7O1—C12—O2124.8 (3)
C1—C7—H7A109.5O1—C12—C11119.2 (3)
C1—C7—H7B109.5O2—C12—C11116.0 (2)
H7A—C7—H7B109.5C4—N1—H1A109.5
C1—C7—H7C109.5C4—N1—H1B109.5
H7A—C7—H7C109.5H1A—N1—H1B109.5
H7B—C7—H7C109.5C4—N1—H1C109.5
C3—C8—H8A109.5H1A—N1—H1C109.5
C3—C8—H8B109.5H1B—N1—H1C109.5
H8A—C8—H8B109.5C10—O3—H3105 (2)
C3—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.99 (4)1.46 (4)2.421 (3)160 (3)
N1—H1A···O4i0.892.022.879 (3)162
N1—H1A···O3i0.892.513.248 (3)140
N1—H1B···O1ii0.892.092.826 (3)140
N1—H1B···O4iii0.892.583.075 (3)116
N1—H1C···O2iv0.891.922.798 (3)167
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H14N+·C3H3O4
Mr239.27
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)13.732 (3), 7.8522 (16), 23.124 (5)
V3)2493.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.981, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
23089, 2856, 1643
Rint0.096
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.166, 1.05
No. of reflections2856
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.99 (4)1.46 (4)2.421 (3)160 (3)
N1—H1A···O4i0.892.022.879 (3)162
N1—H1A···O3i0.892.513.248 (3)140
N1—H1B···O1ii0.892.092.826 (3)140
N1—H1B···O4iii0.892.583.075 (3)116
N1—H1C···O2iv0.891.922.798 (3)167
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+3/2, z+1; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University, Nanjing, People's Republic of China.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Fu, D.-W. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds