organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-2,4-di­methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 July 2011; accepted 22 July 2011; online 30 July 2011)

Mol­ecules of the title compound, C14H14ClNO2S, are bent at the S atom with a C—SO2—NH—C torsion angle of 57.7 (2)°. The benzene rings are rotated relative to each other by 68.1 (1)°. In the crystal, N—H⋯O(S) hydrogen bonds pack the mol­ecules into infinite chains parallel to the b axis.

Related literature

For the hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Arjunan et al. (2004[Arjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60A, 1141-1159.]); Gowda et al. (1999[Gowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261-267.]); for N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]); and for N-(ar­yl)-aryl­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1282.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]); Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2178.]). For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Monoclinic, P 21 /c

  • a = 9.1093 (8) Å

  • b = 9.9106 (9) Å

  • c = 16.142 (1) Å

  • β = 96.505 (9)°

  • V = 1447.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.888, Tmax = 0.961

  • 5342 measured reflections

  • 2934 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.08

  • 2934 reflections

  • 177 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.08 (2) 2.891 (4) 166 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects on the structures and other aspects of N-(aryl)-amides (Arjunan et al., 2004; Gowda et al., 1999), N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-(aryl)-arylsulfonamides (Gowda et al., 2010; Shakuntala et al., 2011), in the present work, the crystal structure of N-(4-chlorophenyl)-2,4-dimethylbenzenesulfonamide (I) has been determined (Fig. 1). The N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of 57.7 (2)°, compared to the values of -54.9 (2)° in N-(2-chlorophenyl)- 2,4-dimethylbenzenesulfonamide (II)(Gowda et al., 2010) and 44.6 (2)° in N-(3-chlorophenyl)-2,4-dimethylbenzenesulfonamide (III) (Shakuntala et al., 2011).

The two benzene rings in (I) are tilted relative to each other by 68.1 (1)°, compared to the value of 66.2 (1)° (II) and 75.7 (1)° in (III). The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The crystal packing of molecules in (I) via N—H···O(S) hydrogen bonds (Table 1) is shown in Fig.2.

Related literature top

For the hydrogen-bonding preferences of sulfonamides, see: Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Arjunan et al. (2004); Gowda et al. (1999); for N-(aryl)-methanesulfonamides, see: Gowda et al. (2007); and for N-(aryl)-arylsulfonamides, see: Gelbrich et al. (2007); Gowda et al. (2010); Perlovich et al. (2006); Shakuntala et al. (2011). For the preparation of the title compound, see: Savitha & Gowda (2006).

Experimental top

The solution of 1,3-xylene (1,3-dimethylbenzene) (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 4-chloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(4-chlorophenyl)-2,4-dimethylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å and methyl C—H = 0.96 Å and with isotropic displacement parameters set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(4-Chlorophenyl)-2,4-dimethylbenzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 616
Mr = 295.77Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2044 reflections
a = 9.1093 (8) Åθ = 2.5–27.7°
b = 9.9106 (9) ŵ = 0.41 mm1
c = 16.142 (1) ÅT = 293 K
β = 96.505 (9)°Prism, colourless
V = 1447.9 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2934 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 711
Tmin = 0.888, Tmax = 0.961k = 812
5342 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.9349P]
where P = (Fo2 + 2Fc2)/3
2934 reflections(Δ/σ)max = 0.002
177 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C14H14ClNO2SV = 1447.9 (2) Å3
Mr = 295.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1093 (8) ŵ = 0.41 mm1
b = 9.9106 (9) ÅT = 293 K
c = 16.142 (1) Å0.30 × 0.20 × 0.10 mm
β = 96.505 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2934 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2219 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.961Rint = 0.013
5342 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.28 e Å3
2934 reflectionsΔρmin = 0.32 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6057 (3)0.0526 (2)0.39055 (15)0.0469 (6)
C20.6430 (3)0.1450 (3)0.45485 (16)0.0542 (6)
C30.7412 (3)0.1003 (3)0.52140 (17)0.0641 (7)
H30.76760.16020.56490.077*
C40.8019 (3)0.0276 (3)0.52681 (17)0.0618 (7)
C50.7618 (3)0.1160 (3)0.46227 (19)0.0643 (7)
H50.80040.20290.46440.077*
C60.6650 (3)0.0771 (3)0.39452 (18)0.0575 (7)
H60.63920.13770.35130.069*
C70.7258 (3)0.1399 (2)0.21393 (14)0.0458 (6)
C80.7325 (4)0.0198 (3)0.1716 (2)0.0709 (8)
H80.65000.03610.16390.085*
C90.8622 (4)0.0178 (3)0.1404 (2)0.0817 (10)
H90.86740.09940.11250.098*
C100.9820 (4)0.0654 (3)0.15092 (19)0.0696 (8)
C110.9774 (3)0.1839 (3)0.19339 (18)0.0685 (8)
H111.06000.23960.20060.082*
C120.8494 (3)0.2206 (3)0.22558 (16)0.0587 (7)
H120.84650.30060.25540.070*
C130.5833 (4)0.2867 (3)0.4561 (2)0.0760 (9)
H13A0.47950.28380.46160.091*
H13B0.59850.33160.40500.091*
H13C0.63380.33510.50230.091*
C140.9094 (4)0.0683 (4)0.6002 (2)0.0841 (10)
H14A0.85630.10600.64280.101*
H14B0.96370.00940.62180.101*
H14C0.97660.13440.58290.101*
N10.5919 (2)0.1852 (2)0.24225 (13)0.0504 (5)
H1N0.587 (3)0.2672 (18)0.2515 (16)0.061*
O10.3758 (2)0.18577 (19)0.31728 (13)0.0667 (5)
O20.4524 (2)0.02597 (17)0.25512 (12)0.0638 (5)
Cl11.14202 (12)0.01793 (12)0.10872 (7)0.1119 (4)
S10.49106 (7)0.09643 (6)0.29924 (4)0.04969 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (14)0.0414 (12)0.0497 (14)0.0080 (10)0.0070 (11)0.0040 (11)
C20.0632 (16)0.0511 (14)0.0504 (14)0.0098 (12)0.0154 (12)0.0028 (12)
C30.0742 (18)0.073 (2)0.0456 (14)0.0171 (16)0.0078 (13)0.0035 (14)
C40.0549 (16)0.078 (2)0.0523 (15)0.0122 (15)0.0074 (12)0.0172 (15)
C50.0646 (17)0.0546 (16)0.0729 (19)0.0027 (14)0.0044 (14)0.0148 (15)
C60.0664 (17)0.0424 (14)0.0621 (16)0.0032 (12)0.0006 (13)0.0024 (12)
C70.0602 (15)0.0353 (12)0.0405 (12)0.0029 (11)0.0000 (11)0.0061 (10)
C80.079 (2)0.0476 (16)0.088 (2)0.0072 (14)0.0195 (17)0.0116 (15)
C90.104 (3)0.0538 (18)0.092 (2)0.0131 (18)0.032 (2)0.0058 (17)
C100.0696 (19)0.076 (2)0.0644 (18)0.0251 (17)0.0137 (15)0.0246 (16)
C110.0613 (18)0.081 (2)0.0620 (17)0.0025 (16)0.0021 (14)0.0097 (16)
C120.0706 (18)0.0540 (16)0.0496 (15)0.0057 (14)0.0011 (13)0.0013 (12)
C130.100 (2)0.0541 (18)0.074 (2)0.0043 (16)0.0123 (18)0.0156 (15)
C140.0680 (19)0.114 (3)0.0679 (19)0.0132 (19)0.0022 (16)0.0274 (19)
N10.0649 (13)0.0290 (10)0.0575 (13)0.0021 (10)0.0074 (10)0.0023 (9)
O10.0522 (11)0.0563 (11)0.0919 (14)0.0044 (9)0.0100 (10)0.0039 (10)
O20.0695 (12)0.0422 (10)0.0751 (13)0.0126 (9)0.0118 (10)0.0014 (9)
Cl10.0955 (7)0.1262 (9)0.1214 (8)0.0489 (6)0.0447 (6)0.0358 (7)
S10.0499 (3)0.0361 (3)0.0616 (4)0.0040 (3)0.0001 (3)0.0016 (3)
Geometric parameters (Å, º) top
C1—C61.392 (4)C9—C101.363 (5)
C1—C21.397 (4)C9—H90.9300
C1—S11.762 (3)C10—C111.363 (5)
C2—C31.390 (4)C10—Cl11.742 (3)
C2—C131.508 (4)C11—C121.378 (4)
C3—C41.382 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.378 (4)C13—H13A0.9600
C4—C141.504 (4)C13—H13B0.9600
C5—C61.380 (4)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C121.377 (4)C14—H14C0.9600
C7—C81.377 (4)N1—S11.630 (2)
C7—N11.423 (3)N1—H1N0.828 (17)
C8—C91.387 (4)O1—S11.429 (2)
C8—H80.9300O2—S11.430 (2)
C6—C1—C2120.7 (2)C11—C10—Cl1120.3 (3)
C6—C1—S1117.1 (2)C10—C11—C12119.5 (3)
C2—C1—S1122.1 (2)C10—C11—H11120.2
C3—C2—C1116.5 (3)C12—C11—H11120.2
C3—C2—C13119.2 (3)C7—C12—C11120.6 (3)
C1—C2—C13124.2 (3)C7—C12—H12119.7
C4—C3—C2124.0 (3)C11—C12—H12119.7
C4—C3—H3118.0C2—C13—H13A109.5
C2—C3—H3118.0C2—C13—H13B109.5
C5—C4—C3117.7 (3)H13A—C13—H13B109.5
C5—C4—C14121.2 (3)C2—C13—H13C109.5
C3—C4—C14121.1 (3)H13A—C13—H13C109.5
C4—C5—C6120.8 (3)H13B—C13—H13C109.5
C4—C5—H5119.6C4—C14—H14A109.5
C6—C5—H5119.6C4—C14—H14B109.5
C5—C6—C1120.3 (3)H14A—C14—H14B109.5
C5—C6—H6119.9C4—C14—H14C109.5
C1—C6—H6119.9H14A—C14—H14C109.5
C12—C7—C8119.2 (3)H14B—C14—H14C109.5
C12—C7—N1119.4 (2)C7—N1—S1124.70 (17)
C8—C7—N1121.4 (2)C7—N1—H1N115.6 (19)
C7—C8—C9120.0 (3)S1—N1—H1N112.6 (19)
C7—C8—H8120.0O1—S1—O2118.81 (12)
C9—C8—H8120.0O1—S1—N1104.76 (12)
C10—C9—C8119.7 (3)O2—S1—N1107.43 (12)
C10—C9—H9120.2O1—S1—C1111.24 (12)
C8—C9—H9120.2O2—S1—C1107.25 (12)
C9—C10—C11120.9 (3)N1—S1—C1106.67 (11)
C9—C10—Cl1118.8 (3)
C6—C1—C2—C30.2 (4)C8—C9—C10—Cl1178.3 (3)
S1—C1—C2—C3176.34 (19)C9—C10—C11—C120.5 (4)
C6—C1—C2—C13179.5 (3)Cl1—C10—C11—C12179.3 (2)
S1—C1—C2—C134.0 (4)C8—C7—C12—C111.8 (4)
C1—C2—C3—C40.0 (4)N1—C7—C12—C11175.2 (2)
C13—C2—C3—C4179.7 (3)C10—C11—C12—C71.2 (4)
C2—C3—C4—C50.3 (4)C12—C7—N1—S1130.2 (2)
C2—C3—C4—C14179.1 (3)C8—C7—N1—S152.9 (3)
C3—C4—C5—C60.4 (4)C7—N1—S1—O1175.7 (2)
C14—C4—C5—C6178.9 (3)C7—N1—S1—O257.0 (2)
C4—C5—C6—C10.3 (4)C7—N1—S1—C157.7 (2)
C2—C1—C6—C50.0 (4)C6—C1—S1—O1146.0 (2)
S1—C1—C6—C5176.6 (2)C2—C1—S1—O137.4 (2)
C12—C7—C8—C90.8 (4)C6—C1—S1—O214.5 (2)
N1—C7—C8—C9176.1 (3)C2—C1—S1—O2168.8 (2)
C7—C8—C9—C100.9 (5)C6—C1—S1—N1100.3 (2)
C8—C9—C10—C111.5 (5)C2—C1—S1—N176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (2)2.08 (2)2.891 (4)166 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1093 (8), 9.9106 (9), 16.142 (1)
β (°) 96.505 (9)
V3)1447.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.888, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
5342, 2934, 2219
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.08
No. of reflections2934
No. of parameters177
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.828 (17)2.082 (18)2.891 (4)166 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement programme.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationArjunan, V., Mohan, S., Subramanian, S. & Gowda, B. T. (2004). Spectrochim. Acta Part A, 60A, 1141–1159.  CrossRef CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Bhat, D. K., Fuess, H. & Weiss, A. (1999). Z. Naturforsch. Teil A, 54, 261–267.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2178.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds