organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis[1-(4-meth­­oxy­phen­yl)ethyl­­idene]thio­carbonohydrazide

aSchool of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, People's Republic of China
*Correspondence e-mail: xyzhaosut@163.com

(Received 24 May 2011; accepted 19 July 2011; online 23 July 2011)

In the title mol­ecule, C19H22N4O2S, the two benzene rings form a dihedral angle of 9.16 (13)°. In the crystal, pairs of weak inter­molecular C—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further linked through weak C—H⋯O inter­actions into sheets parallel to (012).

Related literature

For related Schiff base derivatives of thio­carbonohydrazide, see: Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Camp et al. (2010[Camp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374-17377.]). For a related structure, see: Affan et al. (2010[Affan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N4O2S

  • Mr = 370.47

  • Monoclinic, P 21 /n

  • a = 7.4225 (6) Å

  • b = 11.4705 (11) Å

  • c = 21.749 (2) Å

  • β = 91.781 (1)°

  • V = 1850.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.41 × 0.39 × 0.35 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.935

  • 9108 measured reflections

  • 3256 independent reflections

  • 1829 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.05

  • 3256 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O1i 0.93 2.59 3.478 (4) 161
C3—H3A⋯S1ii 0.96 2.90 3.503 (3) 122
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiocarbonohydrazide and it's Schiff base derivatives have attracted considerable interest in the chemistry of metal complexes, owing to their wide range of biological activities and catalytical abilities (Loncle et al., 2004; Camp et al., 2010). Herein, we report the crystal structure of the title compound, (I), which is a new derivative of thiocarbonohydrazide.

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide monohydrate (Affan et al., 2010). Four N atoms and the C=S are almost coplanar. The N1/N2/C2 plane and the benzene ring C4-C9 form a dihedral angle of 12.20 (3) °. The benzene ring C4-C9 and the benzene ring C13-C18 form a dihedral angle of 9.16 (13) °.

In the crystal structure, weak intermolecular C—H···S hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers, which are further linked through the weak C—H···O interactions (Table 1) into sheets parallel to (012) plane.

Related literature top

For related Schiff base derivatives of thiocarbonohydrazide, see: Loncle et al. (2004); Camp et al. (2010). For a related structure, see: Affan et al. (2010).

Experimental top

4-Methoxylacetophenone (10.0 mmol), 30 ml of ethanol and thiocarbohydrazide (5.0 mmol) were mixed in 50 ml flash. After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
1,5-Bis[1-(4-methoxyphenyl)ethylidene]thiocarbonohydrazide top
Crystal data top
C19H22N4O2SF(000) = 784
Mr = 370.47Dx = 1.330 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4225 (6) ÅCell parameters from 1954 reflections
b = 11.4705 (11) Åθ = 2.6–21.8°
c = 21.749 (2) ŵ = 0.20 mm1
β = 91.781 (1)°T = 298 K
V = 1850.8 (3) Å3Block, yellow
Z = 40.41 × 0.39 × 0.35 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3256 independent reflections
Radiation source: fine-focus sealed tube1829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.924, Tmax = 0.935k = 1313
9108 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.9707P]
where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H22N4O2SV = 1850.8 (3) Å3
Mr = 370.47Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4225 (6) ŵ = 0.20 mm1
b = 11.4705 (11) ÅT = 298 K
c = 21.749 (2) Å0.41 × 0.39 × 0.35 mm
β = 91.781 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1829 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.935Rint = 0.050
9108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3256 reflectionsΔρmin = 0.21 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.89899 (14)0.14956 (8)1.05758 (4)0.0558 (3)
N10.9376 (4)0.1693 (2)0.93818 (11)0.0464 (7)
H10.97990.09950.93820.056*
N20.9174 (4)0.2304 (2)0.88416 (12)0.0441 (7)
N30.8371 (4)0.3316 (2)0.98297 (12)0.0493 (7)
H30.83830.36110.94660.059*
N40.7809 (4)0.3991 (2)1.03058 (12)0.0462 (7)
O10.8713 (4)0.46947 (19)0.62470 (10)0.0617 (7)
O20.5350 (4)0.78761 (19)1.21510 (11)0.0650 (7)
C10.8904 (4)0.2201 (3)0.99129 (14)0.0416 (8)
C20.9728 (4)0.1862 (3)0.83430 (14)0.0404 (8)
C31.0640 (6)0.0700 (3)0.83080 (16)0.0620 (11)
H3A1.13690.05770.86750.093*
H3B1.13890.06820.79560.093*
H3C0.97460.00970.82710.093*
C40.9453 (4)0.2574 (3)0.77845 (14)0.0397 (8)
C50.8960 (5)0.3744 (3)0.78197 (15)0.0489 (9)
H50.87680.40730.82030.059*
C60.8753 (5)0.4419 (3)0.73063 (15)0.0515 (9)
H60.84510.52020.73450.062*
C70.8987 (5)0.3951 (3)0.67283 (15)0.0456 (8)
C80.9468 (5)0.2803 (3)0.66780 (15)0.0497 (9)
H80.96470.24780.62930.060*
C90.9687 (5)0.2128 (3)0.72022 (15)0.0488 (9)
H91.00020.13470.71610.059*
C100.8880 (5)0.4244 (3)0.56465 (15)0.0622 (10)
H10A1.00640.39220.56050.093*
H10B0.86950.48590.53520.093*
H10C0.79950.36460.55740.093*
C110.7401 (4)0.5055 (3)1.01736 (14)0.0424 (8)
C120.7505 (5)0.5578 (3)0.95444 (15)0.0570 (10)
H12A0.85870.53190.93560.085*
H12B0.75170.64120.95770.085*
H12C0.64760.53370.92970.085*
C130.6849 (4)0.5776 (3)1.06957 (14)0.0393 (8)
C140.7042 (5)0.5384 (3)1.12935 (15)0.0481 (9)
H140.75250.46461.13640.058*
C150.6550 (5)0.6040 (3)1.17903 (15)0.0503 (9)
H150.67070.57491.21870.060*
C160.5819 (5)0.7137 (3)1.16945 (16)0.0486 (9)
C170.5580 (5)0.7541 (3)1.11045 (16)0.0566 (10)
H170.50700.82721.10360.068*
C180.6088 (5)0.6877 (3)1.06136 (16)0.0539 (9)
H180.59190.71701.02170.065*
C190.5427 (5)0.7484 (3)1.27698 (16)0.0628 (10)
H19A0.46400.68271.28120.094*
H19B0.50520.81021.30350.094*
H19C0.66400.72601.28810.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0754 (7)0.0489 (5)0.0435 (5)0.0089 (5)0.0060 (4)0.0056 (4)
N10.062 (2)0.0384 (15)0.0387 (16)0.0058 (14)0.0058 (14)0.0021 (13)
N20.0564 (19)0.0396 (15)0.0365 (16)0.0022 (14)0.0035 (13)0.0019 (13)
N30.069 (2)0.0404 (16)0.0390 (16)0.0090 (15)0.0065 (14)0.0010 (12)
N40.0554 (19)0.0411 (16)0.0421 (16)0.0063 (14)0.0013 (13)0.0048 (13)
O10.090 (2)0.0475 (14)0.0473 (15)0.0034 (13)0.0007 (13)0.0103 (12)
O20.091 (2)0.0421 (14)0.0629 (17)0.0096 (13)0.0140 (14)0.0056 (12)
C10.043 (2)0.0383 (18)0.044 (2)0.0008 (16)0.0024 (15)0.0028 (15)
C20.047 (2)0.0327 (17)0.0416 (19)0.0051 (15)0.0052 (16)0.0004 (14)
C30.094 (3)0.040 (2)0.053 (2)0.008 (2)0.013 (2)0.0044 (17)
C40.043 (2)0.0341 (17)0.0418 (19)0.0034 (15)0.0047 (15)0.0017 (15)
C50.064 (2)0.0397 (19)0.043 (2)0.0035 (17)0.0013 (17)0.0059 (16)
C60.071 (3)0.0345 (18)0.049 (2)0.0035 (17)0.0032 (18)0.0012 (17)
C70.051 (2)0.0391 (19)0.047 (2)0.0077 (16)0.0031 (17)0.0078 (16)
C80.064 (2)0.047 (2)0.039 (2)0.0009 (18)0.0059 (17)0.0002 (16)
C90.066 (3)0.0331 (17)0.048 (2)0.0023 (17)0.0079 (18)0.0005 (16)
C100.065 (3)0.076 (3)0.046 (2)0.000 (2)0.0095 (19)0.0107 (19)
C110.041 (2)0.0394 (19)0.046 (2)0.0008 (16)0.0027 (15)0.0039 (15)
C120.070 (3)0.047 (2)0.053 (2)0.0007 (19)0.0007 (19)0.0031 (17)
C130.040 (2)0.0346 (17)0.043 (2)0.0029 (15)0.0017 (15)0.0010 (15)
C140.055 (2)0.0325 (17)0.056 (2)0.0041 (16)0.0022 (18)0.0044 (16)
C150.060 (2)0.0436 (19)0.048 (2)0.0039 (18)0.0044 (18)0.0051 (16)
C160.049 (2)0.0371 (19)0.060 (2)0.0026 (17)0.0070 (18)0.0017 (17)
C170.071 (3)0.0379 (19)0.060 (2)0.0167 (19)0.001 (2)0.0043 (18)
C180.068 (3)0.044 (2)0.050 (2)0.0109 (19)0.0017 (18)0.0056 (16)
C190.070 (3)0.061 (2)0.057 (2)0.006 (2)0.011 (2)0.0051 (19)
Geometric parameters (Å, º) top
S1—C11.653 (3)C8—C91.384 (4)
N1—C11.350 (4)C8—H80.9300
N1—N21.372 (3)C9—H90.9300
N1—H10.8600C10—H10A0.9600
N2—C21.277 (4)C10—H10B0.9600
N3—C11.349 (4)C10—H10C0.9600
N3—N41.368 (3)C11—C131.473 (4)
N3—H30.8600C11—C121.499 (4)
N4—C111.288 (4)C12—H12A0.9600
O1—C71.361 (4)C12—H12B0.9600
O1—C101.414 (4)C12—H12C0.9600
O2—C161.359 (4)C13—C141.379 (4)
O2—C191.418 (4)C13—C181.393 (4)
C2—C41.472 (4)C14—C151.375 (4)
C2—C31.498 (4)C14—H140.9300
C3—H3A0.9600C15—C161.383 (4)
C3—H3B0.9600C15—H150.9300
C3—H3C0.9600C16—C171.371 (4)
C4—C91.382 (4)C17—C181.374 (4)
C4—C51.394 (4)C17—H170.9300
C5—C61.364 (4)C18—H180.9300
C5—H50.9300C19—H19A0.9600
C6—C71.383 (4)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C7—C81.370 (4)
C1—N1—N2119.2 (3)O1—C10—H10A109.5
C1—N1—H1120.4O1—C10—H10B109.5
N2—N1—H1120.4H10A—C10—H10B109.5
C2—N2—N1119.7 (3)O1—C10—H10C109.5
C1—N3—N4122.0 (3)H10A—C10—H10C109.5
C1—N3—H3119.0H10B—C10—H10C109.5
N4—N3—H3119.0N4—C11—C13115.4 (3)
C11—N4—N3116.3 (3)N4—C11—C12124.4 (3)
C7—O1—C10117.8 (3)C13—C11—C12120.1 (3)
C16—O2—C19119.5 (3)C11—C12—H12A109.5
N3—C1—N1112.2 (3)C11—C12—H12B109.5
N3—C1—S1125.8 (2)H12A—C12—H12B109.5
N1—C1—S1122.1 (2)C11—C12—H12C109.5
N2—C2—C4116.1 (3)H12A—C12—H12C109.5
N2—C2—C3123.7 (3)H12B—C12—H12C109.5
C4—C2—C3120.2 (3)C14—C13—C18116.5 (3)
C2—C3—H3A109.5C14—C13—C11121.3 (3)
C2—C3—H3B109.5C18—C13—C11122.1 (3)
H3A—C3—H3B109.5C15—C14—C13122.7 (3)
C2—C3—H3C109.5C15—C14—H14118.7
H3A—C3—H3C109.5C13—C14—H14118.7
H3B—C3—H3C109.5C14—C15—C16119.5 (3)
C9—C4—C5116.6 (3)C14—C15—H15120.3
C9—C4—C2122.2 (3)C16—C15—H15120.3
C5—C4—C2121.2 (3)O2—C16—C17116.4 (3)
C6—C5—C4121.7 (3)O2—C16—C15124.4 (3)
C6—C5—H5119.2C17—C16—C15119.2 (3)
C4—C5—H5119.2C16—C17—C18120.6 (3)
C5—C6—C7120.6 (3)C16—C17—H17119.7
C5—C6—H6119.7C18—C17—H17119.7
C7—C6—H6119.7C17—C18—C13121.5 (3)
O1—C7—C8125.1 (3)C17—C18—H18119.2
O1—C7—C6115.8 (3)C13—C18—H18119.2
C8—C7—C6119.1 (3)O2—C19—H19A109.5
C7—C8—C9119.8 (3)O2—C19—H19B109.5
C7—C8—H8120.1H19A—C19—H19B109.5
C9—C8—H8120.1O2—C19—H19C109.5
C4—C9—C8122.2 (3)H19A—C19—H19C109.5
C4—C9—H9118.9H19B—C19—H19C109.5
C8—C9—H9118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.593.478 (4)161
C3—H3A···S1ii0.962.903.503 (3)122
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC19H22N4O2S
Mr370.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.4225 (6), 11.4705 (11), 21.749 (2)
β (°) 91.781 (1)
V3)1850.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.41 × 0.39 × 0.35
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
9108, 3256, 1829
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.05
No. of reflections3256
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.593.478 (4)160.5
C3—H3A···S1ii0.962.903.503 (3)121.9
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+2, y, z+2.
 

Acknowledgements

The author acknowledges financial support by Shenyang University of Technology.

References

First citationAffan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374–17377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds