organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[(E)-(3-Phenyl-1H-pyrazol-4-yl)methyl­­idene]amino}-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology, Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 June 2011; accepted 24 June 2011; online 9 July 2011)

In the title compound, C12H10N6S, a weak intra­molecular C—H⋯S hydrogen bond stabilizes the mol­ecular conformation. The pyrazole and triazole rings form a dihedral angle of 17.82 (8)°. The mol­ecule adopts an E configuration with respect to the central C=N double bond. In the crystal, inter­molecular N—H⋯N and N—H⋯S hydrogen bonds link mol­ecules into chains propagating in [20[\overline{1}]].

Related literature

For applications of Schiff bases, see: Kahveci et al. (2005[Kahveci, B., Bekircan, O. & Karaoglu, S. A. (2005). Indian J. Chem. Sect. B, 44, 2614-2617.]); Bekircan et al. (2006[Bekircan, O., Kahveci, B. & Kucuk, M. (2006). Turk. J. Chem. 30, 29-40.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o2799-o2800.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N6S

  • Mr = 270.32

  • Monoclinic, P 21 /c

  • a = 4.1180 (4) Å

  • b = 17.9237 (16) Å

  • c = 17.0787 (15) Å

  • β = 97.352 (3)°

  • V = 1250.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.55 × 0.26 × 0.19 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.872, Tmax = 0.954

  • 14262 measured reflections

  • 4361 independent reflections

  • 3204 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 1.03

  • 4361 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.84 (2) 2.59 (2) 3.3593 (15) 153.6 (17)
N6—H1N6⋯N1ii 0.90 (2) 1.91 (2) 2.7884 (15) 168.0 (2)
C10—H10A⋯S1 0.93 2.50 3.2183 (13) 134
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases derived from various heterocycles have been reported to possess antimicrobial (Kahveci et al., 2005), anticancer (Bekircan et al., 2006) and antifungal (Singh et al., 1988) activities. Recently, we have reported the crystal structure of 3-Ethyl-6-[3-(4-fluorophenyl)-1H-pyrazole-4-yl]- 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole (Fun et al., 2010). In continuation of our studies of triazole derivatives, the title compound, (I), has been synthesized. Herewith we present its crystal structure.

In (I) (Fig. 1), the central pyrazole ring (N1–N2/C7–C9) makes dihedral angles of 37.64 (8) and 17.82 (8)° with the adjacent phenyl (C1–C6) and triazole (N4–N6/C11–C12) rings, respectively. The dihedral angle between the terminal phenyl (C1–C6) and triazole (N4–N6/C11–C12) rings is 47.08 (9)°. The molecule adopts an E configuration about the central C10N3 double bond.

In the crystal structure, intermolecular N6—H1N6···N1 and N2—H1N2···S1 (Table 1) hydrogen bonds link the molecules into chains propagated in [2 0 -1].

Related literature top

For applications of Schiff bases, see: Kahveci et al. (2005); Bekircan et al. (2006); Singh & Dash (1988). For a related structure, see: Fun et al. (2010).

Experimental top

An equimolar mixture of 4-amino-4H-1,2,4-triazole-3-thiol (0.116 g, 0.001 mol) and 3-phenyl-1H-pyrazole-4-carbaldehyde (0.172 g, 0.001) in ethanol were refluxed for 7–8 hours in presence of catalytic amount of sulfuric acid. The precipitated solid was filtered, washed with ethanol and recrystallised from ethanol-dioxane mixture. Yield: 0.214 g, 79.25%. M.p- 526–528 K.

Refinement top

Atoms H1N2 and H1N6 were located from a difference Fourier maps and isotropically refined. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed line denotes weak intramolecular hydrogen bond.
4-{[(E)-(3-Phenyl-1H-pyrazol-4-yl)methylidene]amino}- 1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C12H10N6SF(000) = 560
Mr = 270.32Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4488 reflections
a = 4.1180 (4) Åθ = 2.7–32.1°
b = 17.9237 (16) ŵ = 0.25 mm1
c = 17.0787 (15) ÅT = 296 K
β = 97.352 (3)°Block, colourless
V = 1250.2 (2) Å30.55 × 0.26 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4361 independent reflections
Radiation source: fine-focus sealed tube3204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 32.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 56
Tmin = 0.872, Tmax = 0.954k = 2326
14262 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0574P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
4361 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H10N6SV = 1250.2 (2) Å3
Mr = 270.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1180 (4) ŵ = 0.25 mm1
b = 17.9237 (16) ÅT = 296 K
c = 17.0787 (15) Å0.55 × 0.26 × 0.19 mm
β = 97.352 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4361 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3204 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.954Rint = 0.022
14262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.29 e Å3
4361 reflectionsΔρmin = 0.28 e Å3
180 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40558 (10)0.78578 (2)0.54047 (2)0.04665 (12)
N10.9965 (3)0.79730 (6)0.20882 (6)0.0407 (3)
N21.0317 (3)0.72254 (7)0.20392 (7)0.0420 (3)
N30.5720 (3)0.66043 (6)0.39821 (6)0.0384 (2)
N40.3925 (3)0.64999 (5)0.46129 (6)0.0348 (2)
N50.1337 (4)0.57751 (7)0.53767 (7)0.0488 (3)
N60.1665 (3)0.64885 (6)0.56639 (7)0.0413 (3)
C10.6630 (4)0.93695 (8)0.23797 (9)0.0472 (3)
H1A0.64710.92320.18510.057*
C20.5789 (5)1.00854 (9)0.25766 (11)0.0598 (4)
H2A0.50671.04260.21810.072*
C30.6017 (5)1.02944 (9)0.33542 (12)0.0641 (5)
H3A0.54261.07740.34870.077*
C40.7125 (5)0.97907 (10)0.39391 (11)0.0629 (5)
H4A0.72890.99350.44660.075*
C50.7998 (4)0.90706 (9)0.37484 (9)0.0491 (3)
H5A0.87690.87360.41450.059*
C60.7714 (3)0.88523 (7)0.29628 (7)0.0370 (3)
C70.8527 (3)0.80877 (7)0.27359 (7)0.0341 (2)
C80.9156 (3)0.68630 (7)0.26224 (8)0.0388 (3)
H8A0.91530.63490.26980.047*
C90.7949 (3)0.73971 (7)0.30963 (7)0.0337 (2)
C100.6185 (3)0.72707 (7)0.37639 (7)0.0358 (2)
H10A0.54000.76710.40300.043*
C110.2728 (4)0.58040 (7)0.47418 (8)0.0450 (3)
H11A0.28970.53990.44100.054*
C120.3230 (3)0.69554 (7)0.52237 (7)0.0335 (2)
H1N21.114 (5)0.7046 (11)0.1654 (12)0.064 (6)*
H1N60.095 (5)0.6601 (12)0.6124 (12)0.067 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0665 (2)0.03563 (18)0.04225 (19)0.01109 (15)0.02386 (16)0.00666 (13)
N10.0537 (7)0.0369 (6)0.0350 (5)0.0016 (4)0.0193 (5)0.0000 (4)
N20.0546 (7)0.0397 (6)0.0357 (5)0.0009 (5)0.0210 (5)0.0030 (4)
N30.0492 (6)0.0373 (5)0.0323 (5)0.0024 (4)0.0192 (4)0.0020 (4)
N40.0459 (6)0.0294 (5)0.0322 (5)0.0016 (4)0.0167 (4)0.0020 (4)
N50.0741 (8)0.0330 (6)0.0443 (6)0.0067 (5)0.0264 (6)0.0002 (4)
N60.0590 (7)0.0339 (5)0.0354 (5)0.0037 (5)0.0225 (5)0.0012 (4)
C10.0609 (9)0.0393 (7)0.0429 (7)0.0019 (6)0.0128 (6)0.0037 (5)
C20.0743 (11)0.0391 (8)0.0677 (10)0.0064 (7)0.0150 (9)0.0070 (7)
C30.0760 (12)0.0395 (8)0.0797 (12)0.0054 (8)0.0213 (9)0.0107 (8)
C40.0801 (12)0.0566 (10)0.0543 (9)0.0021 (9)0.0172 (8)0.0203 (8)
C50.0625 (9)0.0468 (8)0.0391 (7)0.0006 (7)0.0110 (6)0.0035 (6)
C60.0414 (6)0.0348 (6)0.0368 (6)0.0027 (5)0.0134 (5)0.0009 (5)
C70.0393 (6)0.0353 (6)0.0294 (5)0.0010 (5)0.0113 (4)0.0006 (4)
C80.0462 (7)0.0358 (6)0.0366 (6)0.0001 (5)0.0140 (5)0.0002 (5)
C90.0375 (6)0.0348 (6)0.0306 (5)0.0003 (4)0.0115 (4)0.0012 (4)
C100.0411 (6)0.0366 (6)0.0321 (5)0.0030 (5)0.0139 (5)0.0021 (4)
C110.0695 (9)0.0288 (6)0.0409 (6)0.0015 (6)0.0231 (6)0.0010 (5)
C120.0381 (6)0.0336 (5)0.0307 (5)0.0010 (4)0.0121 (4)0.0003 (4)
Geometric parameters (Å, º) top
S1—C121.6735 (13)C2—C31.372 (3)
N1—C71.3358 (15)C2—H2A0.9300
N1—N21.3516 (16)C3—C41.380 (3)
N2—C81.3283 (17)C3—H3A0.9300
N2—H1N20.84 (2)C4—C51.390 (2)
N3—C101.2731 (17)C4—H4A0.9300
N3—N41.3950 (14)C5—C61.3880 (19)
N4—C111.3693 (16)C5—H5A0.9300
N4—C121.3830 (15)C6—C71.4744 (17)
N5—C111.2905 (18)C7—C91.4160 (17)
N5—N61.3700 (16)C8—C91.3862 (17)
N6—C121.3433 (16)C8—H8A0.9300
N6—H1N60.90 (2)C9—C101.4460 (16)
C1—C21.382 (2)C10—H10A0.9300
C1—C61.3916 (19)C11—H11A0.9300
C1—H1A0.9300
C7—N1—N2105.45 (10)C6—C5—C4119.74 (15)
C8—N2—N1112.74 (11)C6—C5—H5A120.1
C8—N2—H1N2128.2 (13)C4—C5—H5A120.1
N1—N2—H1N2119.0 (13)C5—C6—C1118.92 (13)
C10—N3—N4117.80 (11)C5—C6—C7121.48 (12)
C11—N4—C12107.64 (10)C1—C6—C7119.60 (12)
C11—N4—N3118.92 (10)N1—C7—C9110.02 (11)
C12—N4—N3133.20 (10)N1—C7—C6120.03 (11)
C11—N5—N6103.26 (11)C9—C7—C6129.93 (11)
C12—N6—N5114.42 (11)N2—C8—C9106.89 (11)
C12—N6—H1N6125.9 (14)N2—C8—H8A126.6
N5—N6—H1N6119.6 (14)C9—C8—H8A126.6
C2—C1—C6120.79 (15)C8—C9—C7104.90 (11)
C2—C1—H1A119.6C8—C9—C10127.30 (12)
C6—C1—H1A119.6C7—C9—C10127.52 (11)
C3—C2—C1120.07 (16)N3—C10—C9119.17 (12)
C3—C2—H2A120.0N3—C10—H10A120.4
C1—C2—H2A120.0C9—C10—H10A120.4
C2—C3—C4119.84 (15)N5—C11—N4112.28 (12)
C2—C3—H3A120.1N5—C11—H11A123.9
C4—C3—H3A120.1N4—C11—H11A123.9
C3—C4—C5120.62 (16)N6—C12—N4102.40 (10)
C3—C4—H4A119.7N6—C12—S1126.82 (9)
C5—C4—H4A119.7N4—C12—S1130.77 (9)
C7—N1—N2—C80.32 (16)N2—C8—C9—C70.12 (15)
C10—N3—N4—C11164.74 (13)N2—C8—C9—C10174.12 (13)
C10—N3—N4—C1221.8 (2)N1—C7—C9—C80.33 (15)
C11—N5—N6—C120.19 (18)C6—C7—C9—C8178.66 (13)
C6—C1—C2—C30.0 (3)N1—C7—C9—C10173.91 (13)
C1—C2—C3—C40.8 (3)C6—C7—C9—C104.4 (2)
C2—C3—C4—C50.4 (3)N4—N3—C10—C9178.11 (11)
C3—C4—C5—C60.8 (3)C8—C9—C10—N32.6 (2)
C4—C5—C6—C11.6 (2)C7—C9—C10—N3175.63 (13)
C4—C5—C6—C7178.29 (14)N6—N5—C11—N40.09 (18)
C2—C1—C6—C51.2 (2)C12—N4—C11—N50.03 (18)
C2—C1—C6—C7178.68 (15)N3—N4—C11—N5175.07 (12)
N2—N1—C7—C90.39 (15)N5—N6—C12—N40.20 (16)
N2—N1—C7—C6178.91 (12)N5—N6—C12—S1179.73 (11)
C5—C6—C7—N1143.18 (14)C11—N4—C12—N60.14 (15)
C1—C6—C7—N136.93 (19)N3—N4—C12—N6174.18 (13)
C5—C6—C7—C938.6 (2)C11—N4—C12—S1179.79 (12)
C1—C6—C7—C9141.26 (15)N3—N4—C12—S15.8 (2)
N1—N2—C8—C90.12 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (2)2.59 (2)3.3593 (15)153.6 (17)
N6—H1N6···N1ii0.90 (2)1.91 (2)2.7884 (15)168.0 (2)
C10—H10A···S10.932.503.2183 (13)134
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N6S
Mr270.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.1180 (4), 17.9237 (16), 17.0787 (15)
β (°) 97.352 (3)
V3)1250.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.55 × 0.26 × 0.19
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.872, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
14262, 4361, 3204
Rint0.022
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 1.03
No. of reflections4361
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (2)2.59 (2)3.3593 (15)153.6 (17)
N6—H1N6···N1ii0.90 (2)1.91 (2)2.7884 (15)168.0 (2)
C10—H10A···S10.93002.50003.2183 (13)134
Symmetry codes: (i) x+1, y+3/2, z1/2; (ii) x1, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMI thanks the Board for Research in Nuclear Sciences, Government of India for a Young Scientist award.

References

First citationBekircan, O., Kahveci, B. & Kucuk, M. (2006). Turk. J. Chem. 30, 29–40.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o2799–o2800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahveci, B., Bekircan, O. & Karaoglu, S. A. (2005). Indian J. Chem. Sect. B, 44, 2614–2617.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds