organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-hy­dr­oxy­benzyl­­idene)-3-methyl­benzohydrazide

aCollege of Chemistry & Pharmacy, Taizhou University, Taizhou Zhejiang 317000, People's Republic of China, and bDepartment of Chemistry, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: liushiyong2010@yahoo.cn

(Received 15 June 2011; accepted 28 June 2011; online 2 July 2011)

In the title mol­ecule, C15H13BrN2O2, an intra­molecular O—H⋯N hydrogen bond influences the mol­ecular conformation; the two benzene rings form a dihedral angle of 13.6 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis and weak inter­molecular C—H⋯O hydrogen bonds further link these chains into layers parallel to the ac plane.

Related literature

For applications of hydrazone compounds, see: Hillmer et al. (2010[Hillmer, A. S., Putcha, P., Levin, J., Hogen, T., Hyman, B. T., Kretzschmar, H., McLean, P. J. & Giese, A. (2010). Biochem. Biophys. Res. Commun. 391, 461-466.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]). For the crystal structures of related hydrazone compounds, see: Vijayakumar et al. (2009[Vijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564-1569.]); Liu & You (2010[Liu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652.]); Liu & Wang (2010[Liu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.]). For related structures, see: Xu et al. (2009[Xu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O2

  • Mr = 333.18

  • Monoclinic, P 21 /n

  • a = 7.138 (3) Å

  • b = 27.404 (10) Å

  • c = 7.859 (3) Å

  • β = 112.297 (5)°

  • V = 1422.4 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.89 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.705, Tmax = 0.761

  • 6807 measured reflections

  • 3045 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.106

  • S = 0.99

  • 3045 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.02 (2) 2.890 (4) 163 (4)
O1—H1⋯N1 0.82 1.89 2.605 (4) 146
C14—H14⋯O1ii 0.93 2.44 3.226 (4) 143
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been focused on hydrazones and their medicinal applications (Hillmer et al., 2010; Raj et al., 2007). The crystal structures of such compounds are of particular interest (Vijayakumar et al., 2009). As a continuation of our work with hydrazone compounds (Liu & You, 2010; Liu & Wang, 2010), we report herein the crystal structure of the title compound, (I).

In (I) (Fig. 1), two benzene rings are inclined with a dihedral angle of 13.6 (3) °. All the bond lengths are comparable to those observed in related structures (Xu et al., 2009; Shafiq et al., 2009), and those we reported previously (Liu & You, 2010; Liu & Wang, 2010).

In the crystal structure, molecules are linked through N–H···O hydrogen bonds (Table 1), to form one-dimensional chains running along the a axis (Fig. 2). Weak intermolecular C—H···O hydrogen bonds (Table 1) link further these chains into layers parallel to ac plane.

Related literature top

For applications of hydrazone compounds, see: Hillmer et al. (2010); Raj et al. (2007). For the crystal structures of related hydrazone compounds, see: Vijayakumar et al. (2009); Liu & You (2010); Liu & Wang (2010). For related structures, see: Xu et al. (2009); Shafiq et al. (2009).

Experimental top

The title compound was prepared by the condensation reaction of 5-bromosalicylaldehyde (0.05 mol, 10.0 g) and 3-methylbenzohydrazide (0.05 mol, 7.5 g) in anhydrous methanol (100 ml) at ambient temperature. Colourless block-shaped single crystals suitable for X-ray structural determination were obtained by slow evaporation of the solution for 5 d.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically and constrained to ride on their parent atoms, with C–H distances of 0.93–0.96 Å, O–H distance of 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1 and C15).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and the intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the c axis. N—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in N—H···O hydrogen bonding were omitted.
(E)-N'-(5-Bromo-2-hydroxybenzylidene)-3-methylbenzohydrazide top
Crystal data top
C15H13BrN2O2F(000) = 672
Mr = 333.18Dx = 1.556 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 983 reflections
a = 7.138 (3) Åθ = 2.5–24.5°
b = 27.404 (10) ŵ = 2.89 mm1
c = 7.859 (3) ÅT = 298 K
β = 112.297 (5)°Block, colourless
V = 1422.4 (9) Å30.13 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3045 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.705, Tmax = 0.761k = 2935
6807 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.1905P]
where P = (Fo2 + 2Fc2)/3
3045 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C15H13BrN2O2V = 1422.4 (9) Å3
Mr = 333.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.138 (3) ŵ = 2.89 mm1
b = 27.404 (10) ÅT = 298 K
c = 7.859 (3) Å0.13 × 0.10 × 0.10 mm
β = 112.297 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1489 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.761Rint = 0.056
6807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.32 e Å3
3045 reflectionsΔρmin = 0.36 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82155 (9)1.017416 (16)0.22011 (7)0.0691 (2)
N10.7539 (5)0.78962 (11)0.4049 (4)0.0343 (8)
N20.7822 (5)0.76007 (11)0.5550 (4)0.0354 (8)
O10.6966 (5)0.80234 (9)0.0601 (4)0.0539 (9)
H10.70950.78650.15250.081*
O20.6037 (4)0.69873 (9)0.3697 (3)0.0444 (8)
C10.7856 (6)0.86760 (13)0.2857 (5)0.0313 (9)
C20.7363 (6)0.85015 (13)0.1057 (5)0.0365 (10)
C30.7251 (7)0.88254 (15)0.0339 (5)0.0474 (12)
H30.69920.87090.15180.057*
C40.7520 (7)0.93154 (15)0.0010 (6)0.0498 (12)
H40.74060.95310.09380.060*
C50.7957 (6)0.94894 (14)0.1761 (6)0.0430 (11)
C60.8154 (6)0.91721 (13)0.3166 (5)0.0386 (10)
H60.84960.92930.43520.046*
C70.8052 (6)0.83446 (14)0.4357 (5)0.0358 (10)
H70.85580.84600.55590.043*
C80.7035 (6)0.71426 (13)0.5232 (5)0.0327 (10)
C90.7491 (6)0.68420 (13)0.6938 (5)0.0320 (10)
C100.7697 (6)0.63410 (14)0.6820 (5)0.0367 (10)
H100.75370.62020.56940.044*
C110.8140 (6)0.60430 (13)0.8356 (6)0.0386 (10)
C120.8309 (6)0.62636 (16)1.0002 (6)0.0514 (12)
H120.85730.60691.10380.062*
C130.8099 (7)0.67597 (16)1.0153 (6)0.0498 (12)
H130.82300.68971.12750.060*
C140.7689 (6)0.70533 (14)0.8605 (5)0.0400 (11)
H140.75480.73890.86880.048*
C150.8392 (8)0.55033 (15)0.8246 (7)0.0644 (14)
H15A0.77820.54000.69870.097*
H15B0.77470.53400.89590.097*
H15C0.98080.54240.87220.097*
H20.879 (5)0.7674 (15)0.664 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0954 (5)0.0325 (3)0.0780 (4)0.0030 (3)0.0314 (3)0.0053 (2)
N10.038 (2)0.0305 (18)0.034 (2)0.0021 (15)0.0127 (17)0.0075 (14)
N20.037 (2)0.0333 (19)0.0296 (19)0.0013 (16)0.0062 (17)0.0078 (15)
O10.084 (2)0.0348 (17)0.0420 (17)0.0091 (16)0.0230 (18)0.0069 (13)
O20.054 (2)0.0402 (17)0.0278 (16)0.0026 (13)0.0030 (15)0.0019 (12)
C10.028 (3)0.034 (2)0.035 (2)0.0047 (18)0.0148 (19)0.0009 (18)
C20.036 (3)0.031 (2)0.040 (3)0.0017 (18)0.012 (2)0.0017 (19)
C30.067 (4)0.046 (3)0.031 (2)0.002 (2)0.020 (2)0.001 (2)
C40.060 (3)0.046 (3)0.045 (3)0.005 (2)0.021 (3)0.016 (2)
C50.047 (3)0.028 (2)0.053 (3)0.0012 (19)0.017 (2)0.0012 (19)
C60.040 (3)0.034 (2)0.036 (2)0.0017 (19)0.009 (2)0.0013 (19)
C70.035 (3)0.035 (2)0.034 (2)0.0006 (19)0.010 (2)0.0022 (18)
C80.032 (3)0.031 (2)0.034 (2)0.0023 (18)0.011 (2)0.0027 (18)
C90.032 (3)0.032 (2)0.029 (2)0.0009 (17)0.008 (2)0.0021 (17)
C100.034 (3)0.037 (2)0.037 (2)0.0035 (18)0.012 (2)0.0017 (18)
C110.031 (3)0.034 (2)0.052 (3)0.0041 (19)0.016 (2)0.009 (2)
C120.050 (3)0.056 (3)0.041 (3)0.008 (2)0.010 (2)0.018 (2)
C130.059 (3)0.057 (3)0.033 (3)0.010 (2)0.017 (2)0.001 (2)
C140.047 (3)0.035 (2)0.038 (2)0.005 (2)0.016 (2)0.0043 (19)
C150.073 (4)0.039 (3)0.084 (4)0.003 (2)0.033 (3)0.014 (2)
Geometric parameters (Å, º) top
Br1—C51.904 (4)C6—H60.9300
N1—C71.279 (4)C7—H70.9300
N1—N21.381 (4)C8—C91.501 (5)
N2—C81.359 (4)C9—C101.388 (5)
N2—H20.899 (10)C9—C141.390 (5)
O1—C21.359 (4)C10—C111.391 (5)
O1—H10.8200C10—H100.9300
O2—C81.222 (4)C11—C121.391 (5)
C1—C61.383 (5)C11—C151.496 (5)
C1—C21.406 (5)C12—C131.378 (6)
C1—C71.452 (5)C12—H120.9300
C2—C31.390 (5)C13—C141.394 (5)
C3—C41.369 (5)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.375 (5)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.371 (5)C15—H15C0.9600
C7—N1—N2117.6 (3)O2—C8—C9122.6 (3)
C8—N2—N1117.9 (3)N2—C8—C9114.1 (3)
C8—N2—H2120 (3)C10—C9—C14120.0 (3)
N1—N2—H2120 (3)C10—C9—C8118.4 (3)
C2—O1—H1109.5C14—C9—C8121.6 (3)
C6—C1—C2118.3 (3)C9—C10—C11121.2 (4)
C6—C1—C7120.7 (3)C9—C10—H10119.4
C2—C1—C7120.9 (3)C11—C10—H10119.4
O1—C2—C3117.6 (4)C10—C11—C12117.6 (4)
O1—C2—C1122.7 (3)C10—C11—C15121.5 (4)
C3—C2—C1119.6 (3)C12—C11—C15120.9 (4)
C4—C3—C2120.4 (4)C13—C12—C11122.4 (4)
C4—C3—H3119.8C13—C12—H12118.8
C2—C3—H3119.8C11—C12—H12118.8
C3—C4—C5120.1 (4)C12—C13—C14119.2 (4)
C3—C4—H4119.9C12—C13—H13120.4
C5—C4—H4119.9C14—C13—H13120.4
C6—C5—C4120.1 (4)C9—C14—C13119.7 (4)
C6—C5—Br1120.4 (3)C9—C14—H14120.2
C4—C5—Br1119.5 (3)C13—C14—H14120.2
C5—C6—C1121.3 (4)C11—C15—H15A109.5
C5—C6—H6119.3C11—C15—H15B109.5
C1—C6—H6119.3H15A—C15—H15B109.5
N1—C7—C1121.0 (3)C11—C15—H15C109.5
N1—C7—H7119.5H15A—C15—H15C109.5
C1—C7—H7119.5H15B—C15—H15C109.5
O2—C8—N2123.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)2.02 (2)2.890 (4)163 (4)
O1—H1···N10.821.892.605 (4)146
C14—H14···O1ii0.932.443.226 (4)143
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O2
Mr333.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.138 (3), 27.404 (10), 7.859 (3)
β (°) 112.297 (5)
V3)1422.4 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.89
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.705, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
6807, 3045, 1489
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.106, 0.99
No. of reflections3045
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.899 (10)2.017 (16)2.890 (4)163 (4)
O1—H1···N10.821.892.605 (4)146
C14—H14···O1ii0.932.443.226 (4)143
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Undergraduate Innovation Group Project of Zhejiang Province (project no. 2010R428015).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHillmer, A. S., Putcha, P., Levin, J., Hogen, T., Hyman, B. T., Kretzschmar, H., McLean, P. J. & Giese, A. (2010). Biochem. Biophys. Res. Commun. 391, 461–466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, S.-Y. & Wang, X. (2010). Acta Cryst. E66, o1775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-Y. & You, Z. (2010). Acta Cryst. E66, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijayakumar, S., Adhikari, A., Kalluraya, B. & Chandrasekharan, K. (2009). Opt. Mater. 31, 1564–1569.  Web of Science CrossRef CAS Google Scholar
First citationXu, L., Huang, S.-S., Zhang, B.-J., Wang, S.-Y. & Zhang, H.-L. (2009). Acta Cryst. E65, o2412.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds