organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{[(2-fur­yl)(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)meth­yl]amino}­acetate

aSchool of Chemical Science and Technology, Yunnan University, Kunming 65009, People's Republic of China
*Correspondence e-mail: blackcrossing630@vip.sina.com

(Received 19 June 2011; accepted 1 July 2011; online 6 July 2011)

In the title compound, C18H17N3O4, the amino group of the glycine methyl ester fragment is involved in an intra­molecular N—H⋯O hydrogen bond. The phenyl and furyl rings form dihedral angles of 10.20 (4) and 54.56°, respectively, with the pyrazole ring. In the crystal, mol­ecules related by translation along the b axis are linked into chains via weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Zhang et al. (2007[Zhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.]). For details of the synthesis, see: Jensen (1959[Jensen, B. S. (1959). Acta Chem. Scand. 13, 1668-1670.]). For applications of pyrazol­one derivatives in coordination chemistry, see: Casas et al. (2007[Casas, J. S., García-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561-1589.]). For the anti­bacterial activity of pyrazolone derivatives, see: Li et al. (2000[Li, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233-236.]); Zhang et al. (2008[Zhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990-993.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3O4

  • Mr = 339.35

  • Triclinic, [P \overline 1]

  • a = 7.499 (4) Å

  • b = 9.503 (5) Å

  • c = 11.749 (6) Å

  • α = 96.712 (7)°

  • β = 91.654 (8)°

  • γ = 90.337 (7)°

  • V = 831.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.48 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6492 measured reflections

  • 2915 independent reflections

  • 1805 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.150

  • S = 1.01

  • 29015 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.97 (3) 1.89 (3) 2.704 (3) 140 (2)
C14—H14⋯O1i 0.93 2.48 3.386 (4) 164
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazolones constitute an important class of heterocycles due to their properties and applications (Casas et al., 2007). Schiff bases derived from 1-phenyl-3-methyl-4-(2-furoyl)-5-pyrazolone (PMFP) have found extensive application in coordination chemistry and due to their antibacterial activity (Zhang et al., 2007, 2008; Li et al., 2000). In order to expand this field, we present here the title compound (I).

In (I) (Fig. 1), the phenyl ring (C1-C6) is twisted at 10.20 (4)° from the mean plane of pyrazole ring. The pyrazole ring and the O1/C10/C9/C11/N3 mean form a dihedral angle of 5.62 (4)°. The bond length of C9—C11(1.390 (3) Å) between the usual C—C and C=C bonds indicates the delocalization of the electrons. Strong intramolecular hydrogen bond N3—H3A···O1(Table 1) is indicative of the enamine-keto form.

In the crystal structure, molecules related by translation along axis b are linked into chains via weak intermolecular C—H···O hydrogen bonds.

Related literature top

For a related structure, see: Zhang et al. (2007). For details of the synthesis, see: Jensen (1959). For applications of pyrazolone derivatives in coordination chemistry, see: Casas et al. (2007). For the antibacterial activity of pyrazolone derivatives, see: Li et al. (2000); Zhang et al. (2008).

Experimental top

PMFP was synthesized according to the method proposed by Jensen (1959). A mixture of a 10 ml PMFP (2 mmol, 0.5366 g) anhydrous ethanol solution, and 10 ml Glycine methyl ester hydrochloride anhydrous ethanol solution (2 mmol, 0.2511 g)solution was refluxed for ca.7 h, adding a few drops of glacial acetic acid as a catalyst. Then ethanol was removed by evaporation and the resulting black precipitate formed was filtered off, washed with cold anhydrous ethanol and dried in air. Black block single crystals suitable for analysis were obtained by slowly evaporation of a solution in anhydrous ethanol at room temperature for a few days.

Refinement top

H atoms bonded to N3 was located in a difference map and isotropically refined. Other H atoms were placed in calculated positions [C—H 0.93-0.97 Å], and refined as riding, with Uiso(H)=1.2-1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 200); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dotted line indicates hydrogen bond.
Methyl 2-{[(2-furyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H- pyrazol-4-ylidene)methyl]amino}acetate top
Crystal data top
C18H17N3O4Z = 2
Mr = 339.35F(000) = 356
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.499 (4) ÅCell parameters from 1502 reflections
b = 9.503 (5) Åθ = 2.9–22.6°
c = 11.749 (6) ŵ = 0.10 mm1
α = 96.712 (7)°T = 295 K
β = 91.654 (8)°Block, black
γ = 90.337 (7)°0.48 × 0.14 × 0.08 mm
V = 831.2 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1805 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
phi and ω scansh = 88
6492 measured reflectionsk = 1111
2915 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
2915 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H17N3O4γ = 90.337 (7)°
Mr = 339.35V = 831.2 (7) Å3
Triclinic, P1Z = 2
a = 7.499 (4) ÅMo Kα radiation
b = 9.503 (5) ŵ = 0.10 mm1
c = 11.749 (6) ÅT = 295 K
α = 96.712 (7)°0.48 × 0.14 × 0.08 mm
β = 91.654 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
1805 reflections with I > 2σ(I)
6492 measured reflectionsRint = 0.034
2915 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
2915 reflectionsΔρmin = 0.21 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2043 (3)0.1986 (3)0.7105 (2)0.0509 (6)
C20.1118 (4)0.1820 (3)0.6063 (3)0.0697 (8)
H20.04540.10000.58380.084*
C30.1192 (5)0.2881 (4)0.5362 (3)0.0888 (10)
H30.05550.27780.46660.107*
C40.2192 (5)0.4093 (4)0.5672 (3)0.0848 (10)
H40.22350.47990.51880.102*
C50.3120 (4)0.4247 (3)0.6696 (3)0.0725 (8)
H50.37970.50640.69090.087*
C60.3064 (4)0.3203 (3)0.7418 (2)0.0599 (7)
H60.37070.33130.81120.072*
C70.0294 (4)0.2611 (3)0.8061 (2)0.0648 (8)
H7A0.05530.26390.74300.097*
H7B0.03110.27840.87410.097*
H7C0.11780.33250.78920.097*
C80.1184 (3)0.1175 (2)0.8250 (2)0.0493 (6)
C90.2063 (3)0.0467 (2)0.9256 (2)0.0446 (6)
C100.2473 (3)0.0934 (2)0.8965 (2)0.0464 (6)
C110.2438 (3)0.0855 (2)1.0341 (2)0.0461 (6)
C120.2315 (3)0.2330 (2)1.0582 (2)0.0507 (6)
C130.2946 (3)0.3534 (2)1.0035 (2)0.0605 (7)
H130.35460.36280.93490.073*
C140.2530 (4)0.4631 (3)1.0695 (3)0.0741 (9)
H140.28040.55851.05340.089*
C150.1673 (4)0.4029 (3)1.1587 (3)0.0827 (10)
H150.12340.45161.21630.099*
C160.6100 (4)0.1991 (3)1.4644 (3)0.0859 (10)
H16A0.72360.21061.43090.129*
H16B0.62770.17281.54030.129*
H16C0.54610.28671.46810.129*
C170.4484 (3)0.1167 (3)1.2930 (2)0.0533 (6)
C180.3474 (3)0.0089 (2)1.2339 (2)0.0538 (7)
H18A0.42050.09281.23340.065*
H18B0.24050.02421.27560.065*
H3A0.309 (3)0.107 (3)1.094 (2)0.065 (8)*
N10.1955 (2)0.09022 (19)0.78289 (18)0.0501 (5)
N20.1101 (3)0.0388 (2)0.74126 (18)0.0540 (6)
N30.2991 (3)0.0135 (2)1.11800 (17)0.0498 (5)
O10.3157 (2)0.19626 (16)0.95855 (14)0.0587 (5)
O20.1511 (3)0.26029 (18)1.15579 (17)0.0717 (6)
O30.4695 (3)0.22735 (19)1.25441 (17)0.0740 (6)
O40.5077 (2)0.08888 (19)1.39454 (17)0.0684 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0540 (14)0.0451 (14)0.0541 (16)0.0075 (11)0.0107 (12)0.0048 (12)
C20.0727 (18)0.0695 (19)0.067 (2)0.0029 (15)0.0007 (16)0.0103 (16)
C30.099 (2)0.098 (3)0.073 (2)0.001 (2)0.0079 (19)0.029 (2)
C40.103 (2)0.071 (2)0.086 (3)0.0040 (19)0.010 (2)0.0325 (19)
C50.090 (2)0.0497 (17)0.079 (2)0.0030 (15)0.0129 (18)0.0110 (15)
C60.0764 (18)0.0431 (15)0.0602 (17)0.0008 (13)0.0075 (14)0.0051 (13)
C70.0724 (17)0.0433 (15)0.0753 (19)0.0130 (13)0.0006 (15)0.0057 (13)
C80.0486 (14)0.0396 (13)0.0582 (16)0.0015 (11)0.0102 (12)0.0031 (13)
C90.0488 (13)0.0317 (12)0.0516 (15)0.0004 (10)0.0073 (11)0.0037 (11)
C100.0476 (13)0.0376 (13)0.0523 (16)0.0022 (10)0.0064 (11)0.0037 (11)
C110.0430 (13)0.0352 (13)0.0589 (16)0.0015 (10)0.0111 (11)0.0029 (12)
C120.0510 (14)0.0375 (13)0.0633 (16)0.0027 (11)0.0126 (12)0.0017 (11)
C130.0667 (16)0.0362 (14)0.0769 (18)0.0007 (12)0.0145 (14)0.0040 (13)
C140.080 (2)0.0348 (15)0.107 (2)0.0035 (13)0.0123 (18)0.0032 (15)
C150.107 (2)0.0366 (16)0.107 (3)0.0150 (15)0.020 (2)0.0167 (16)
C160.093 (2)0.090 (2)0.068 (2)0.0136 (19)0.0048 (17)0.0150 (18)
C170.0572 (15)0.0503 (16)0.0520 (17)0.0034 (12)0.0090 (13)0.0026 (13)
C180.0562 (15)0.0431 (14)0.0618 (18)0.0002 (11)0.0050 (13)0.0046 (12)
N10.0560 (12)0.0388 (11)0.0533 (13)0.0014 (9)0.0035 (10)0.0036 (10)
N20.0573 (13)0.0410 (12)0.0612 (14)0.0026 (9)0.0054 (10)0.0052 (11)
N30.0633 (13)0.0348 (11)0.0507 (13)0.0006 (9)0.0020 (10)0.0025 (10)
O10.0786 (12)0.0353 (9)0.0598 (11)0.0064 (8)0.0016 (9)0.0035 (8)
O20.0906 (13)0.0409 (10)0.0846 (14)0.0075 (9)0.0310 (11)0.0049 (9)
O30.0962 (14)0.0482 (12)0.0768 (14)0.0107 (10)0.0018 (11)0.0063 (10)
O40.0828 (13)0.0657 (13)0.0548 (12)0.0119 (10)0.0029 (10)0.0016 (10)
Geometric parameters (Å, º) top
C1—C21.382 (4)C11—N31.335 (3)
C1—C61.390 (4)C11—C121.464 (3)
C1—N11.412 (3)C12—C131.341 (3)
C2—C31.377 (4)C12—O21.361 (3)
C2—H20.9300C13—C141.408 (4)
C3—C41.377 (5)C13—H130.9300
C3—H30.9300C14—C151.320 (4)
C4—C51.365 (4)C14—H140.9300
C4—H40.9300C15—O21.366 (3)
C5—C61.380 (4)C15—H150.9300
C5—H50.9300C16—O41.453 (3)
C6—H60.9300C16—H16A0.9600
C7—C81.505 (3)C16—H16B0.9600
C7—H7A0.9600C16—H16C0.9600
C7—H7B0.9600C17—O31.204 (3)
C7—H7C0.9600C17—O41.317 (3)
C8—N21.303 (3)C17—C181.498 (4)
C8—C91.431 (3)C18—N31.440 (3)
C9—C111.390 (3)C18—H18A0.9700
C9—C101.446 (3)C18—H18B0.9700
C10—O11.247 (3)N1—N21.409 (3)
C10—N11.377 (3)N3—H3A0.97 (3)
C2—C1—C6119.7 (2)C13—C12—O2109.9 (2)
C2—C1—N1119.3 (2)C13—C12—C11131.8 (2)
C6—C1—N1121.1 (2)O2—C12—C11118.2 (2)
C3—C2—C1119.3 (3)C12—C13—C14107.2 (2)
C3—C2—H2120.4C12—C13—H13126.4
C1—C2—H2120.4C14—C13—H13126.4
C2—C3—C4121.2 (3)C15—C14—C13106.1 (2)
C2—C3—H3119.4C15—C14—H14127.0
C4—C3—H3119.4C13—C14—H14127.0
C5—C4—C3119.4 (3)C14—C15—O2111.5 (3)
C5—C4—H4120.3C14—C15—H15124.2
C3—C4—H4120.3O2—C15—H15124.2
C4—C5—C6120.6 (3)O4—C16—H16A109.5
C4—C5—H5119.7O4—C16—H16B109.5
C6—C5—H5119.7H16A—C16—H16B109.5
C5—C6—C1119.8 (3)O4—C16—H16C109.5
C5—C6—H6120.1H16A—C16—H16C109.5
C1—C6—H6120.1H16B—C16—H16C109.5
C8—C7—H7A109.5O3—C17—O4125.1 (3)
C8—C7—H7B109.5O3—C17—C18125.1 (3)
H7A—C7—H7B109.5O4—C17—C18109.8 (2)
C8—C7—H7C109.5N3—C18—C17110.5 (2)
H7A—C7—H7C109.5N3—C18—H18A109.6
H7B—C7—H7C109.5C17—C18—H18A109.6
N2—C8—C9112.3 (2)N3—C18—H18B109.6
N2—C8—C7117.8 (2)C17—C18—H18B109.6
C9—C8—C7129.8 (2)H18A—C18—H18B108.1
C11—C9—C8133.2 (2)C10—N1—N2111.56 (19)
C11—C9—C10121.9 (2)C10—N1—C1129.3 (2)
C8—C9—C10104.8 (2)N2—N1—C1118.9 (2)
O1—C10—N1126.3 (2)C8—N2—N1106.2 (2)
O1—C10—C9128.8 (2)C11—N3—C18126.3 (2)
N1—C10—C9104.9 (2)C11—N3—H3A113.8 (15)
N3—C11—C9119.2 (2)C18—N3—H3A119.8 (15)
N3—C11—C12118.9 (2)C12—O2—C15105.4 (2)
C9—C11—C12121.9 (2)C17—O4—C16117.5 (2)
C6—C1—C2—C31.5 (4)C11—C12—C13—C14176.1 (3)
N1—C1—C2—C3179.4 (2)C12—C13—C14—C150.4 (3)
C1—C2—C3—C41.1 (5)C13—C14—C15—O20.4 (4)
C2—C3—C4—C50.4 (5)O3—C17—C18—N37.8 (4)
C3—C4—C5—C60.0 (5)O4—C17—C18—N3173.49 (19)
C4—C5—C6—C10.5 (4)O1—C10—N1—N2175.3 (2)
C2—C1—C6—C51.2 (4)C9—C10—N1—N25.2 (2)
N1—C1—C6—C5179.7 (2)O1—C10—N1—C10.7 (4)
N2—C8—C9—C11178.9 (2)C9—C10—N1—C1179.8 (2)
C7—C8—C9—C112.6 (4)C2—C1—N1—C10166.8 (2)
N2—C8—C9—C102.5 (3)C6—C1—N1—C1014.1 (4)
C7—C8—C9—C10173.8 (2)C2—C1—N1—N27.4 (3)
C11—C9—C10—O10.9 (4)C6—C1—N1—N2171.6 (2)
C8—C9—C10—O1175.9 (2)C9—C8—N2—N10.6 (2)
C11—C9—C10—N1178.59 (19)C7—C8—N2—N1177.36 (19)
C8—C9—C10—N14.5 (2)C10—N1—N2—C83.7 (2)
C8—C9—C11—N3167.5 (2)C1—N1—N2—C8178.93 (18)
C10—C9—C11—N38.3 (3)C9—C11—N3—C18178.5 (2)
C8—C9—C11—C1215.0 (4)C12—C11—N3—C180.9 (3)
C10—C9—C11—C12169.2 (2)C17—C18—N3—C11164.5 (2)
N3—C11—C12—C13129.3 (3)C13—C12—O2—C150.1 (3)
C9—C11—C12—C1348.2 (4)C11—C12—O2—C15176.9 (2)
N3—C11—C12—O246.7 (3)C14—C15—O2—C120.3 (3)
C9—C11—C12—O2135.8 (2)O3—C17—O4—C161.5 (4)
O2—C12—C13—C140.2 (3)C18—C17—O4—C16179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.97 (3)1.89 (3)2.704 (3)140 (2)
C14—H14···O1i0.932.483.386 (4)164
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H17N3O4
Mr339.35
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.499 (4), 9.503 (5), 11.749 (6)
α, β, γ (°)96.712 (7), 91.654 (8), 90.337 (7)
V3)831.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6492, 2915, 1805
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.150, 1.01
No. of reflections2915
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: APEX2 (Bruker, 200), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.97 (3)1.89 (3)2.704 (3)140 (2)
C14—H14···O1i0.932.483.386 (4)164
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the study on structure–activity relationships of helicid analogues.

References

First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., García-Tasende, M. S., Sanchez, A., Sordo, J. & Touceda, Á. (2007). Coord. Chem. Rev. 251, 1561–1589.  Web of Science CrossRef CAS Google Scholar
First citationJensen, B. S. (1959). Acta Chem. Scand. 13, 1668–1670.  CrossRef CAS Web of Science Google Scholar
First citationLi, J.-Z., Li, G. & Yu, W.-J. (2000). J. Rare Earth, 18, 233–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y. & Zhang, D. (2008). Chin. J. Inorg. Chem. 24, 990–993.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-Q., Li, J.-Z., Zhang, Y., Zhang, D. & Su, Z.-H. (2007). Acta Cryst. E63, o3536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds