organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(4-meth­­oxy­benzyl­­idene)thio­carbonohydrazide methanol monosolvate

aSchool of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, People's Republic of China
*Correspondence e-mail: xyzhaosut@163.com

(Received 27 June 2011; accepted 19 July 2011; online 23 July 2011)

In the title compound, C17H18N4O2S·CH3OH, the two benzene rings in the thio­carbonohydrazide mol­ecule form a dihedral angle of 22.42 (18)°. Pairs of N—H⋯S hydrogen bonds link thio­carbonohydrazide mol­ecules into centrosymmetric dimers. Methanol solvent mol­ecules serve as donors (O—H⋯S and O—H⋯N) and acceptors (N—H⋯O and C—H⋯O) of weak inter­molecular hydrogen bonds, which link further these dimers into double ribbons along the b axis.

Related literature

For related Schiff base derivatives of thio­carbohydrazide, see: Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Camp et al. (2010[Camp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374-17377.]); Opstal & Verpoort (2003[Opstal, T. & Verpoort, F. (2003). Angew. Chem. Int. Ed. 42, 2876-2879.]). For a related structure, see: Affan et al. (2010[Affan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O2S·CH4O

  • Mr = 374.46

  • Triclinic, [P \overline 1]

  • a = 8.8021 (6) Å

  • b = 9.9949 (10) Å

  • c = 11.5902 (13) Å

  • α = 83.132 (1)°

  • β = 84.179 (2)°

  • γ = 70.505 (1)°

  • V = 952.24 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.42 × 0.39 × 0.32 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.923, Tmax = 0.940

  • 4936 measured reflections

  • 3302 independent reflections

  • 1934 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.01

  • 3302 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.82 2.55 3.171 (3) 134
O3—H3A⋯S1 0.82 2.58 3.346 (3) 156
N2—H2⋯O3i 0.86 2.45 3.174 (3) 142
N3—H3⋯S1ii 0.86 2.61 3.446 (3) 165
C2—H2A⋯O3i 0.93 2.51 3.300 (4) 143
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been considerable interest in the chemistry of thiocarbohydrazide Schiff base derivatives (Loncle et al., 2004; Camp et al., 2010), because these derivatives offer opportunities for tuning the metal centred electronic factor, enhancing the solubility and stability of either homogeneous or heterogeneous catalysts (Opstal et al., 2003). Herein we present the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in 1,5-bis[(E)-1-(2-hydroxyphenyl)ethylidene] thiocarbonohydrazide monohydrate (Affan et al., 2010). Four N atoms and the C=S are almost coplanar, the N1/N2/C2 plane and the benzene ring C3–C8 form a dihedral angle of 12.32 (3)°. The benzene rings C3–C8 and C11–C16 form a dihedral angle of 22.42 (18) °.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers. Solvent molecules serve as donors [O—H···S and O—H···N] and acceptors [N—H···O and C—H···O] of the weak intermolecular hydrogen bonds (Table 1), which link further these dimers into doubled ribbons along axis b.

Related literature top

For related Schiff base derivatives of thiocarbohydrazide, see: Loncle et al. (2004); Camp et al. (2010); Opstal & Verpoort (2003). For a related structure, see: Affan et al. (2010).

Experimental top

4-Methoxybenzaldehyde (10.0 mmol), 30 ml e thanol and thiocarbohydrazide (5.0 mmol) were mixed in 50 ml flash After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86; O—H 0.82 and C—H 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dashed lines denote hydrogen bonds.
1,5-Bis(4-methoxybenzylidene)thiocarbonohydrazide methanol monosolvate top
Crystal data top
C17H18N4O2S·CH4OZ = 2
Mr = 374.46F(000) = 396
Triclinic, P1Dx = 1.306 Mg m3
a = 8.8021 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9949 (10) ÅCell parameters from 1379 reflections
c = 11.5902 (13) Åθ = 2.7–25.2°
α = 83.132 (1)°µ = 0.20 mm1
β = 84.179 (2)°T = 298 K
γ = 70.505 (1)°Block, red
V = 952.24 (16) Å30.42 × 0.39 × 0.32 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3302 independent reflections
Radiation source: fine-focus sealed tube1934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.923, Tmax = 0.940k = 1111
4936 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.1975P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H18N4O2S·CH4Oγ = 70.505 (1)°
Mr = 374.46V = 952.24 (16) Å3
Triclinic, P1Z = 2
a = 8.8021 (6) ÅMo Kα radiation
b = 9.9949 (10) ŵ = 0.20 mm1
c = 11.5902 (13) ÅT = 298 K
α = 83.132 (1)°0.42 × 0.39 × 0.32 mm
β = 84.179 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3302 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1934 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.940Rint = 0.023
4936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
3302 reflectionsΔρmin = 0.18 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63183 (11)0.63686 (9)0.08592 (7)0.0604 (3)
N10.6991 (3)0.8790 (2)0.00620 (19)0.0435 (6)
N20.6220 (3)0.8089 (2)0.07669 (19)0.0445 (6)
H20.59510.83680.14540.053*
N30.5206 (3)0.6273 (2)0.1308 (2)0.0487 (7)
H30.50210.55230.11540.058*
N40.4772 (3)0.6718 (2)0.2409 (2)0.0458 (6)
O11.0808 (3)1.2665 (2)0.28491 (19)0.0653 (7)
O20.1682 (3)0.6793 (2)0.76724 (19)0.0688 (7)
C10.5902 (3)0.6955 (3)0.0468 (2)0.0424 (7)
C20.7256 (3)0.9876 (3)0.0215 (2)0.0412 (7)
H2A0.68901.02030.09440.049*
C30.8135 (3)1.0612 (3)0.0612 (2)0.0388 (7)
C40.8918 (4)1.0014 (3)0.1615 (2)0.0471 (8)
H4A0.88390.91500.17730.057*
C50.9813 (4)1.0662 (3)0.2389 (3)0.0522 (8)
H51.03321.02390.30570.063*
C60.9927 (4)1.1946 (3)0.2158 (3)0.0463 (8)
C70.9135 (3)1.2564 (3)0.1173 (3)0.0473 (8)
H70.91891.34420.10290.057*
C80.8264 (3)1.1902 (3)0.0399 (2)0.0439 (7)
H80.77571.23230.02720.053*
C91.1754 (5)1.1998 (4)0.3814 (3)0.0838 (12)
H9A1.10571.19270.43730.126*
H9B1.24371.10620.35550.126*
H9C1.24101.25540.41680.126*
C100.3907 (4)0.6071 (3)0.3027 (3)0.0501 (8)
H100.36380.53910.26860.060*
C110.3309 (4)0.6312 (3)0.4222 (2)0.0458 (8)
C120.3712 (4)0.7200 (3)0.4869 (3)0.0589 (9)
H120.43770.77100.45250.071*
C130.3152 (4)0.7345 (3)0.6009 (3)0.0639 (10)
H130.34450.79430.64330.077*
C140.2149 (4)0.6601 (3)0.6531 (3)0.0498 (8)
C150.1720 (4)0.5731 (3)0.5907 (3)0.0540 (8)
H150.10370.52360.62480.065*
C160.2307 (4)0.5589 (3)0.4766 (3)0.0573 (9)
H160.20170.49840.43470.069*
C170.0688 (5)0.6007 (4)0.8248 (3)0.0738 (11)
H17A0.12580.50050.82370.111*
H17B0.02890.62490.78540.111*
H17C0.04290.62390.90400.111*
O30.5382 (3)0.9498 (3)0.2485 (2)0.0849 (8)
H3A0.56730.88880.19400.127*
C180.6365 (5)0.9076 (5)0.3470 (3)0.0884 (13)
H18A0.57430.94010.41440.133*
H18B0.68120.80550.34130.133*
H18C0.72240.94770.35400.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0755 (7)0.0533 (5)0.0593 (5)0.0349 (5)0.0242 (5)0.0148 (4)
N10.0458 (15)0.0437 (14)0.0427 (14)0.0205 (12)0.0033 (12)0.0020 (11)
N20.0531 (16)0.0473 (14)0.0359 (13)0.0236 (13)0.0047 (12)0.0001 (11)
N30.0550 (16)0.0413 (14)0.0514 (15)0.0228 (13)0.0114 (13)0.0019 (12)
N40.0468 (16)0.0451 (14)0.0437 (15)0.0162 (13)0.0036 (12)0.0016 (12)
O10.0743 (16)0.0593 (14)0.0680 (15)0.0371 (13)0.0204 (13)0.0045 (12)
O20.0862 (18)0.0785 (16)0.0553 (14)0.0468 (14)0.0218 (13)0.0227 (12)
C10.0329 (17)0.0382 (16)0.0516 (18)0.0106 (14)0.0059 (14)0.0037 (14)
C20.0401 (18)0.0455 (17)0.0389 (16)0.0152 (14)0.0007 (14)0.0048 (13)
C30.0348 (16)0.0412 (16)0.0418 (16)0.0138 (13)0.0008 (13)0.0056 (13)
C40.0506 (19)0.0429 (17)0.0529 (19)0.0220 (15)0.0043 (16)0.0104 (15)
C50.059 (2)0.0518 (19)0.0490 (18)0.0235 (17)0.0127 (16)0.0134 (15)
C60.0450 (19)0.0436 (18)0.0522 (19)0.0202 (15)0.0008 (15)0.0028 (15)
C70.0495 (19)0.0382 (17)0.0580 (19)0.0193 (15)0.0007 (16)0.0082 (15)
C80.0434 (18)0.0430 (17)0.0474 (18)0.0158 (15)0.0011 (15)0.0109 (14)
C90.087 (3)0.075 (3)0.084 (3)0.033 (2)0.040 (2)0.004 (2)
C100.056 (2)0.0481 (18)0.0496 (19)0.0248 (16)0.0010 (16)0.0049 (15)
C110.0470 (19)0.0447 (17)0.0461 (18)0.0194 (15)0.0039 (15)0.0011 (14)
C120.067 (2)0.054 (2)0.065 (2)0.0360 (18)0.0159 (19)0.0095 (17)
C130.077 (3)0.060 (2)0.068 (2)0.041 (2)0.014 (2)0.0211 (17)
C140.053 (2)0.0495 (18)0.0498 (19)0.0210 (16)0.0049 (16)0.0088 (15)
C150.060 (2)0.063 (2)0.0486 (19)0.0372 (18)0.0078 (16)0.0024 (16)
C160.074 (2)0.063 (2)0.049 (2)0.0430 (19)0.0036 (18)0.0061 (16)
C170.089 (3)0.092 (3)0.052 (2)0.049 (2)0.019 (2)0.0131 (19)
O30.095 (2)0.0784 (18)0.0610 (16)0.0093 (15)0.0104 (15)0.0029 (13)
C180.091 (3)0.115 (3)0.062 (2)0.040 (3)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
S1—C11.673 (3)C8—H80.9300
N1—C21.267 (3)C9—H9A0.9600
N1—N21.377 (3)C9—H9B0.9600
N2—C11.346 (3)C9—H9C0.9600
N2—H20.8600C10—C111.449 (4)
N3—C11.337 (3)C10—H100.9300
N3—N41.377 (3)C11—C121.378 (4)
N3—H30.8600C11—C161.379 (4)
N4—C101.272 (3)C12—C131.369 (4)
O1—C61.367 (3)C12—H120.9300
O1—C91.417 (4)C13—C141.385 (4)
O2—C141.362 (3)C13—H130.9300
O2—C171.429 (4)C14—C151.359 (4)
C2—C31.455 (4)C15—C161.376 (4)
C2—H2A0.9300C15—H150.9300
C3—C41.383 (4)C16—H160.9300
C3—C81.384 (4)C17—H17A0.9600
C4—C51.379 (4)C17—H17B0.9600
C4—H4A0.9300C17—H17C0.9600
C5—C61.379 (4)O3—C181.380 (4)
C5—H50.9300O3—H3A0.8200
C6—C71.375 (4)C18—H18A0.9600
C7—C81.374 (4)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C2—N1—N2117.7 (2)O1—C9—H9C109.5
C1—N2—N1117.9 (2)H9A—C9—H9C109.5
C1—N2—H2121.0H9B—C9—H9C109.5
N1—N2—H2121.0N4—C10—C11125.0 (3)
C1—N3—N4122.9 (2)N4—C10—H10117.5
C1—N3—H3118.5C11—C10—H10117.5
N4—N3—H3118.5C12—C11—C16117.2 (3)
C10—N4—N3113.5 (3)C12—C11—C10124.0 (3)
C6—O1—C9117.8 (2)C16—C11—C10118.7 (3)
C14—O2—C17117.2 (2)C13—C12—C11121.2 (3)
N3—C1—N2116.1 (3)C13—C12—H12119.4
N3—C1—S1119.4 (2)C11—C12—H12119.4
N2—C1—S1124.5 (2)C12—C13—C14120.1 (3)
N1—C2—C3119.8 (3)C12—C13—H13120.0
N1—C2—H2A120.1C14—C13—H13120.0
C3—C2—H2A120.1C15—C14—O2124.4 (3)
C4—C3—C8118.0 (3)C15—C14—C13119.8 (3)
C4—C3—C2120.8 (3)O2—C14—C13115.7 (3)
C8—C3—C2121.2 (3)C14—C15—C16119.2 (3)
C5—C4—C3121.9 (3)C14—C15—H15120.4
C5—C4—H4A119.0C16—C15—H15120.4
C3—C4—H4A119.0C15—C16—C11122.4 (3)
C6—C5—C4119.1 (3)C15—C16—H16118.8
C6—C5—H5120.4C11—C16—H16118.8
C4—C5—H5120.4O2—C17—H17A109.5
O1—C6—C7116.3 (3)O2—C17—H17B109.5
O1—C6—C5124.1 (3)H17A—C17—H17B109.5
C7—C6—C5119.6 (3)O2—C17—H17C109.5
C8—C7—C6120.9 (3)H17A—C17—H17C109.5
C8—C7—H7119.6H17B—C17—H17C109.5
C6—C7—H7119.6C18—O3—H3A109.5
C7—C8—C3120.5 (3)O3—C18—H18A109.5
C7—C8—H8119.8O3—C18—H18B109.5
C3—C8—H8119.8H18A—C18—H18B109.5
O1—C9—H9A109.5O3—C18—H18C109.5
O1—C9—H9B109.5H18A—C18—H18C109.5
H9A—C9—H9B109.5H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.822.553.171 (3)134
O3—H3A···S10.822.583.346 (3)156
N2—H2···O3i0.862.453.174 (3)142
N3—H3···S1ii0.862.613.446 (3)165
C2—H2A···O3i0.932.513.300 (4)143
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H18N4O2S·CH4O
Mr374.46
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.8021 (6), 9.9949 (10), 11.5902 (13)
α, β, γ (°)83.132 (1), 84.179 (2), 70.505 (1)
V3)952.24 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.42 × 0.39 × 0.32
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
4936, 3302, 1934
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.01
No. of reflections3302
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.822.553.171 (3)134.1
O3—H3A···S10.822.583.346 (3)155.6
N2—H2···O3i0.862.453.174 (3)142.2
N3—H3···S1ii0.862.613.446 (3)164.9
C2—H2A···O3i0.932.513.300 (4)143.4
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z.
 

Acknowledgements

The author acknowledges financial support by Shenyang University of Technology.

References

First citationAffan, M. A., Chee, D. N. A., Ahmad, F. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374–17377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpstal, T. & Verpoort, F. (2003). Angew. Chem. Int. Ed. 42, 2876–2879.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds