organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Dimeth­­oxy­benzyl­­idene)-3,5-dihy­dr­oxy­benzohydrazide methanol monosolvate

aCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China, bDepartment of Immunology, Basic Medical College, Chongqing Medical University, Chongqing 400016, People's Republic of China, and cSchool of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
*Correspondence e-mail: zhangqh11@126.com

(Received 12 July 2011; accepted 23 July 2011; online 30 July 2011)

In the title compound, C16H16N2O5·CH4O, the two benzene rings in the Schiff base mol­ecule form a dihedral angle of 17.1 (1)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the components into corrugated sheets parallel to the (101) plane.

Related literature

For the crystal structures of related Schiff base compounds, see: Deng et al. (2009[Deng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, o721.]); Huang et al. (2008[Huang, S. S., Diao, Y. P. & Kang, T. G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 167-168.]). For anti­bacterial and anti­tumor activities of Schiff base complexes, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O5·CH4O

  • Mr = 348.35

  • Monoclinic, P 21 /c

  • a = 12.467 (3) Å

  • b = 12.201 (3) Å

  • c = 11.149 (3) Å

  • β = 91.191 (3)°

  • V = 1695.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8351 measured reflections

  • 2984 independent reflections

  • 1794 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.162

  • S = 1.00

  • 2984 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O6 0.82 1.92 2.728 (3) 168
O1—H1⋯O5i 0.82 1.93 2.742 (3) 172
O6—H6⋯O4ii 0.82 2.19 2.973 (4) 161
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases containing the C=N fragments arouses considerable interest due to their antifungal, anticancer and antibacterial activities (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). In continuation of our structural studies of Shiff base compounds (Deng et al., 2009; Huang et al., 2008) we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the C7—O5 and C8—N2 bond lengths are 1.228 (3) and 1.274 (3) Å, respecitvely, corresponding to those reported for the related compounds (Deng et al., 2009; Huang et al., 2008). The solvent molecule is linked to the Shiff base molecule via O—H···O hydrogen bond (Table 1).

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link all moieties into corrugated sheets parallel to (101) plane.

Related literature top

For the crystal structures of related Schiff base compounds, see: Deng et al. (2009); Huang et al. (2008). For antibacterial and antitumor activities of Schiff base complexes, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002).

Experimental top

3,5-Dihydroxybenzhydrazide (0.1 mmol,16.8 mg) and 3,4-dimethoxybenzaldehyde (0.1 mmol, 16.6 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 20 minutes and filtered. After keeping the filtrate in air for three days, colourless block-like crystals were formed.

Refinement top

The H18 atom bonded to N1 was located in a difference map and refined isotropically, Other H atoms were placed in geometrically idealized positions (C—H 0.93-0.97 Å; O—H 0.82 Å), and allowed to ride on their parent atoms, with Uiso(H)=1.2-1.5 Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids. Dashed line denotes hydrogen bond.
N'-(3,4-Dimethoxybenzylidene)-3,5-dihydroxybenzohydrazide methanol monosolvate top
Crystal data top
C16H16N2O5·CH4OF(000) = 736
Mr = 348.35Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 1340 reflections
a = 12.467 (3) Åθ = 2.3–21.1°
b = 12.201 (3) ŵ = 0.10 mm1
c = 11.149 (3) ÅT = 295 K
β = 91.191 (3)°Block, colourless
V = 1695.5 (7) Å30.22 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
phi and ω scansh = 1411
8351 measured reflectionsk = 1412
2984 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0897P)2]
where P = (Fo2 + 2Fc2)/3
2984 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H16N2O5·CH4OV = 1695.5 (7) Å3
Mr = 348.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.467 (3) ŵ = 0.10 mm1
b = 12.201 (3) ÅT = 295 K
c = 11.149 (3) Å0.22 × 0.18 × 0.15 mm
β = 91.191 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1794 reflections with I > 2σ(I)
8351 measured reflectionsRint = 0.041
2984 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.68 e Å3
2984 reflectionsΔρmin = 0.32 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H180.492 (3)0.340 (3)0.619 (3)0.067 (11)*
N20.38492 (18)0.42464 (18)0.54230 (19)0.0425 (6)
O50.44125 (17)0.56294 (14)0.72026 (18)0.0515 (5)
O10.65292 (18)0.18020 (14)0.96344 (19)0.0601 (7)
H10.62970.14100.90910.090*
O20.70583 (18)0.55400 (15)1.06156 (18)0.0544 (6)
H20.74580.52581.11210.082*
N10.4573 (2)0.3984 (2)0.6318 (2)0.0430 (6)
C80.3653 (2)0.3502 (2)0.4648 (2)0.0421 (7)
H80.40110.28350.47160.051*
C90.2892 (2)0.3658 (2)0.3669 (2)0.0402 (7)
C40.5705 (2)0.3194 (2)0.8382 (2)0.0390 (7)
H40.54060.26730.78670.047*
C60.5969 (2)0.5075 (2)0.8954 (2)0.0387 (7)
H6A0.58340.58170.88300.046*
C70.4798 (2)0.4703 (2)0.7203 (2)0.0373 (6)
O30.10563 (17)0.57181 (16)0.23529 (19)0.0611 (6)
O40.06565 (17)0.41280 (18)0.09236 (18)0.0589 (6)
C10.6621 (2)0.4745 (2)0.9900 (2)0.0381 (7)
C20.6813 (2)0.3649 (2)1.0103 (2)0.0411 (7)
H2A0.72530.34301.07430.049*
C50.5515 (2)0.43046 (19)0.8190 (2)0.0348 (6)
C140.2689 (2)0.2816 (2)0.2869 (2)0.0450 (7)
H140.30550.21560.29580.054*
C110.1620 (2)0.4774 (2)0.2587 (2)0.0423 (7)
C100.2352 (2)0.4653 (2)0.3514 (2)0.0411 (7)
H100.24880.52320.40380.049*
C120.1404 (2)0.3909 (2)0.1795 (2)0.0443 (7)
C30.6346 (2)0.2874 (2)0.9350 (2)0.0400 (7)
C130.1950 (2)0.2940 (2)0.1939 (3)0.0479 (8)
H130.18210.23650.14090.058*
C160.0472 (3)0.3318 (3)0.0018 (3)0.0626 (9)
H16A0.11200.32000.04140.094*
H16B0.00830.35650.05270.094*
H16C0.02550.26440.03860.094*
C150.1393 (3)0.6683 (3)0.2954 (3)0.0755 (11)
H15A0.13160.65890.38030.113*
H15B0.09610.72890.26840.113*
H15C0.21320.68250.27830.113*
C170.8698 (4)0.4724 (4)1.3338 (3)0.0897 (13)
H17A0.91590.53041.36160.135*
H17B0.89850.40321.35980.135*
H17C0.79950.48211.36580.135*
O60.8632 (2)0.4745 (3)1.2114 (3)0.1058 (10)
H60.92370.47261.18410.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0467 (14)0.0457 (14)0.0346 (13)0.0035 (11)0.0118 (11)0.0033 (11)
O50.0674 (14)0.0377 (11)0.0485 (12)0.0063 (10)0.0173 (10)0.0032 (9)
O10.0853 (17)0.0318 (11)0.0617 (14)0.0043 (10)0.0389 (12)0.0004 (9)
O20.0710 (15)0.0387 (11)0.0526 (13)0.0065 (10)0.0229 (11)0.0088 (9)
N10.0514 (15)0.0414 (14)0.0354 (13)0.0094 (12)0.0155 (11)0.0022 (11)
C80.0459 (17)0.0409 (15)0.0392 (16)0.0054 (13)0.0074 (13)0.0040 (13)
C90.0420 (17)0.0450 (16)0.0333 (15)0.0011 (13)0.0075 (13)0.0039 (12)
C40.0471 (17)0.0339 (14)0.0356 (15)0.0042 (12)0.0097 (13)0.0023 (11)
C60.0468 (17)0.0297 (14)0.0394 (16)0.0025 (12)0.0043 (13)0.0010 (12)
C70.0410 (16)0.0354 (15)0.0355 (15)0.0004 (12)0.0028 (13)0.0057 (12)
O30.0666 (15)0.0524 (13)0.0629 (14)0.0191 (11)0.0278 (11)0.0073 (10)
O40.0559 (13)0.0718 (14)0.0479 (12)0.0096 (11)0.0243 (10)0.0095 (10)
C10.0433 (16)0.0349 (15)0.0360 (15)0.0068 (12)0.0062 (13)0.0050 (12)
C20.0478 (17)0.0369 (15)0.0380 (15)0.0007 (13)0.0156 (13)0.0012 (12)
C50.0363 (15)0.0355 (14)0.0324 (14)0.0020 (12)0.0049 (12)0.0033 (11)
C140.0537 (18)0.0400 (15)0.0409 (16)0.0041 (14)0.0065 (14)0.0002 (13)
C110.0410 (16)0.0454 (16)0.0402 (16)0.0069 (13)0.0064 (13)0.0011 (13)
C100.0430 (16)0.0439 (16)0.0361 (15)0.0023 (13)0.0068 (13)0.0018 (12)
C120.0403 (17)0.0546 (18)0.0376 (16)0.0019 (14)0.0088 (13)0.0007 (13)
C30.0464 (17)0.0322 (15)0.0407 (16)0.0013 (12)0.0113 (13)0.0009 (12)
C130.0561 (19)0.0460 (17)0.0412 (17)0.0029 (14)0.0088 (15)0.0047 (13)
C160.069 (2)0.071 (2)0.0461 (18)0.0068 (18)0.0232 (17)0.0041 (16)
C150.091 (3)0.051 (2)0.083 (3)0.0223 (19)0.022 (2)0.0127 (19)
C170.108 (4)0.100 (3)0.061 (3)0.003 (3)0.011 (2)0.002 (2)
O60.077 (2)0.151 (3)0.088 (2)0.007 (2)0.0210 (16)0.011 (2)
Geometric parameters (Å, º) top
N2—C81.274 (3)O4—C161.429 (3)
N2—N11.370 (3)C1—C21.376 (4)
O5—C71.228 (3)C2—C31.384 (4)
O1—C31.364 (3)C2—H2A0.9300
O1—H10.8200C14—C131.381 (4)
O2—C11.362 (3)C14—H140.9300
O2—H20.8200C11—C101.372 (4)
N1—C71.345 (3)C11—C121.399 (4)
N1—H180.85 (3)C10—H100.9300
C8—C91.443 (4)C12—C131.371 (4)
C8—H80.9300C13—H130.9300
C9—C141.380 (4)C16—H16A0.9600
C9—C101.398 (4)C16—H16B0.9600
C4—C31.385 (4)C16—H16C0.9600
C4—C51.391 (3)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C6—C11.379 (4)C15—H15C0.9600
C6—C51.382 (3)C17—O61.366 (4)
C6—H6A0.9300C17—H17A0.9600
C7—C51.486 (4)C17—H17B0.9600
O3—C111.371 (3)C17—H17C0.9600
O3—C151.414 (4)O6—H60.8200
O4—C121.360 (3)
C8—N2—N1116.2 (2)O3—C11—C10124.3 (2)
C3—O1—H1109.5O3—C11—C12115.0 (2)
C1—O2—H2109.5C10—C11—C12120.7 (2)
C7—N1—N2120.4 (2)C11—C10—C9119.9 (2)
C7—N1—H18125 (2)C11—C10—H10120.1
N2—N1—H18114 (2)C9—C10—H10120.1
N2—C8—C9122.2 (3)O4—C12—C13125.8 (3)
N2—C8—H8118.9O4—C12—C11115.0 (2)
C9—C8—H8118.9C13—C12—C11119.2 (3)
C14—C9—C10119.0 (2)O1—C3—C2116.6 (2)
C14—C9—C8120.0 (2)O1—C3—C4122.8 (2)
C10—C9—C8121.0 (2)C2—C3—C4120.6 (2)
C3—C4—C5119.2 (2)C12—C13—C14120.3 (3)
C3—C4—H4120.4C12—C13—H13119.9
C5—C4—H4120.4C14—C13—H13119.9
C1—C6—C5120.0 (2)O4—C16—H16A109.5
C1—C6—H6A120.0O4—C16—H16B109.5
C5—C6—H6A120.0H16A—C16—H16B109.5
O5—C7—N1121.6 (2)O4—C16—H16C109.5
O5—C7—C5122.1 (2)H16A—C16—H16C109.5
N1—C7—C5116.3 (2)H16B—C16—H16C109.5
C11—O3—C15117.6 (2)O3—C15—H15A109.5
C12—O4—C16117.8 (2)O3—C15—H15B109.5
O2—C1—C2122.0 (2)H15A—C15—H15B109.5
O2—C1—C6117.5 (2)O3—C15—H15C109.5
C2—C1—C6120.5 (2)H15A—C15—H15C109.5
C1—C2—C3119.6 (2)H15B—C15—H15C109.5
C1—C2—H2A120.2O6—C17—H17A109.5
C3—C2—H2A120.2O6—C17—H17B109.5
C6—C5—C4120.1 (2)H17A—C17—H17B109.5
C6—C5—C7117.8 (2)O6—C17—H17C109.5
C4—C5—C7122.1 (2)H17A—C17—H17C109.5
C9—C14—C13120.9 (3)H17B—C17—H17C109.5
C9—C14—H14119.5C17—O6—H6109.5
C13—C14—H14119.5
C8—N2—N1—C7177.3 (2)C15—O3—C11—C1012.5 (4)
N1—N2—C8—C9178.8 (2)C15—O3—C11—C12167.1 (3)
N2—C8—C9—C14178.5 (3)O3—C11—C10—C9179.4 (3)
N2—C8—C9—C101.4 (4)C12—C11—C10—C90.2 (4)
N2—N1—C7—O54.0 (4)C14—C9—C10—C111.0 (4)
N2—N1—C7—C5174.5 (2)C8—C9—C10—C11178.9 (3)
C5—C6—C1—O2179.2 (2)C16—O4—C12—C135.1 (4)
C5—C6—C1—C21.0 (4)C16—O4—C12—C11174.2 (3)
O2—C1—C2—C3179.8 (3)O3—C11—C12—O41.0 (4)
C6—C1—C2—C30.1 (4)C10—C11—C12—O4179.4 (3)
C1—C6—C5—C40.8 (4)O3—C11—C12—C13178.3 (3)
C1—C6—C5—C7178.6 (2)C10—C11—C12—C131.3 (4)
C3—C4—C5—C60.4 (4)C1—C2—C3—O1177.1 (3)
C3—C4—C5—C7177.2 (2)C1—C2—C3—C41.2 (4)
O5—C7—C5—C616.5 (4)C5—C4—C3—O1176.7 (3)
N1—C7—C5—C6164.9 (2)C5—C4—C3—C21.4 (4)
O5—C7—C5—C4161.2 (3)O4—C12—C13—C14179.6 (3)
N1—C7—C5—C417.4 (4)C11—C12—C13—C141.2 (4)
C10—C9—C14—C131.1 (4)C9—C14—C13—C120.1 (4)
C8—C9—C14—C13178.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O60.821.922.728 (3)168
O1—H1···O5i0.821.932.742 (3)172
O6—H6···O4ii0.822.192.973 (4)161
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O5·CH4O
Mr348.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.467 (3), 12.201 (3), 11.149 (3)
β (°) 91.191 (3)
V3)1695.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8351, 2984, 1794
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.162, 1.00
No. of reflections2984
No. of parameters236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O60.821.922.728 (3)167.8
O1—H1···O5i0.821.932.742 (3)172.0
O6—H6···O4ii0.822.192.973 (4)160.5
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z+1.
 

Acknowledgements

This project was supported by the Fundamental Research Funds for the Central Universities (project No. CDJRC10220006).

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, S., Han, L., Huang, S., Zhang, H., Diao, Y. & Liu, K. (2009). Acta Cryst. E65, o721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S. S., Diao, Y. P. & Kang, T. G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 167–168.  CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds