metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1158-m1159

Bis(μ2-2-chloro­benzoato-κ2O:O′)bis­­[(2-chloro­benzoato-κO)(1,10-phenanthroline-κ2N:N′)copper(II)] dihydrate

aSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, People's Republic of China
*Correspondence e-mail: zhifang889@126.com

(Received 12 July 2011; accepted 22 July 2011; online 30 July 2011)

In the title compound, [Cu2(C7H4ClO2)4(C12H8N2)2]·2H2O, the two crystallographically independent dinuclear complex mol­ecules, A and B, have different Cu⋯Cu separations, viz. 3.286 (1) Å in A and 3.451 (1) Å in B. Both independent mol­ecules reside on inversion centres, so the asymmetric unit contains a half-mol­ecule each of A and B and two water mol­ecules. Each Cu atom has a square-pyramidal environment, being coordinated by two O atoms from two bridging 2-chloro­benzoate ligands, one O atom from a monodentate 2-chloro­benzoate ligand and two N atoms from a 1,10-phenanthroline ligand. The water mol­ecules can also be considered as coordinating ligands, which complete the coordination geometry up to distorted octa­hedral with elongated Cu—O distances, viz. 3.024 (3) Å in A and 2.917 (3) Å in B. In the crystal, weak inter­molecular C—H⋯O inter­actions contribute to the consolidation of the crystal packing.

Related literature

For applications of copper complexes, see: Lo et al. (2000[Lo, S. M. F., Chui, S. S. Y. & Shek, L. Y. (2000). J. Am. Chem. Soc. 122, 6293-6294.]); Müller et al. (2003[Müller, A., Das, S. K. & Talismanov, S. (2003). Angew. Chem. Int. Ed. 42, 5039-5044.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H4ClO2)4(C12H8N2)2]·2H2O

  • Mr = 1145.75

  • Triclinic, [P \overline 1]

  • a = 10.434 (2) Å

  • b = 11.726 (2) Å

  • c = 22.200 (4) Å

  • α = 100.90 (3)°

  • β = 93.92 (2)°

  • γ = 111.62 (3)°

  • V = 2451.0 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 295 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.865, Tmax = 0.914

  • 12840 measured reflections

  • 8587 independent reflections

  • 6410 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.04

  • 8587 reflections

  • 649 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O9i 0.93 2.53 3.267 (6) 136
C8—H8⋯O2ii 0.93 2.47 3.182 (5) 134
C29—H29⋯O6iii 0.93 2.52 3.396 (5) 157
C34—H34⋯O8iv 0.93 2.52 3.376 (5) 153
C36—H36⋯O5v 0.93 2.49 3.054 (4) 119
C42—H42⋯O2vi 0.93 2.48 3.338 (5) 153
O9—H9A⋯O4 0.85 1.77 2.616 (4) 179
O9—H9B⋯O2 0.85 2.04 2.826 (4) 154
O10—H10A⋯O6 0.85 2.03 2.852 (5) 162
O10—H10B⋯O8 0.88 2.16 2.928 (5) 145
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+2, -z+1; (v) -x+1, -y+2, -z+1; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last three decades, copper complexes have received much attention because of their interesting interactions with biological ligands to generate stable mixed coordinated complexes, which play a key role in life processes such as enzymatic catalysis, storage and conveyance of the matter, transfer of copper ions (Müller et al., 2003; Rao et al., 2004; Lo et al., 2000). In order to extend further the study of benzoic acid ligand coordinated to copper ion, we have synthesized the title compound and determined its crystal structure.

The title compound, (I), contains two crystallographically independent dinuclear complex molecules, A (Fig. 1) and B (Fig. 2), respectively, with different Cu···Cu separation - 3.286 (1) Å in A and 3.451 (1) Å in B. Both independent molecules reside on inversion centres, so asymmetric part contains a half of the A molecule, half of the B molecule and two water molecules. Each copper center has a square pyramidal environment being coordinated by two O atoms from two bridging 2-chlorobenzoato ligands, one O atom from monodentate 2-chlorobenzoato ligand and two N atoms from 1,10-phenanthroline ligand. The water molecules can be considered as coordinating ligands too, which complete the coordination geometry up to distorted octahedron with elongated Cu—O distances - 3.024 (3) Å in A and 2.917 (3) Å in B.

In the crystal structure, weak intermolecular C—H···O interactions (Table 1) contribute to the crystal packing consolidation.

Related literature top

For applications of copper complexes, see: Lo et al. (2000); Müller et al. (2003); Rao et al. (2004).

Experimental top

All reagents were obtained from commercial sources and used without further purification. Cu(OAc)2.H2O (0.1996 g,0.10 mmol) was added to 30 ml CH3OH—H2O (2:1,v/v) solution. Then 2-chlorobenzoic acid (0.3131 g, 0.20 mmol) and 1,10-phenanthroline(0.1980 g, 0.10 mmol) were subsequently added. The pH value of the mixture was adjusted to about 5.5 with NaOH solution and stirred continuously for 2 h to obtain a blue clear solution. After filtration, the blue filtrate was allowed to stand at room temperature for two weeks to produce blue block-shaped crystals suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically (O—H 0.85 Å; C—H 0.93 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule A in (I) showing the atomic numbering of non-C atoms and 30% probability displacement ellipsoids [symmetry code: (A) 1 - x, 1 - y, -z]. H atoms omitted for clarity.
[Figure 2] Fig. 2. View of the molecule B in (I) showing the atomic numbering of non-C atoms and 30% probability displacement ellipsoids [symmetry code: (B) 1 - x, 2 - y, 1 - z]. H atoms omitted for clarity.
Bis(µ2-2-chlorobenzoato-κ2O:O')bis[(2-chlorobenzoato- κO)(1,10-phenanthroline-κ2N:N')copper(II)] dihydrate top
Crystal data top
[Cu2(C7H4ClO2)4(C12H8N2)2]·2H2OZ = 2
Mr = 1145.75F(000) = 582
Triclinic, P1Dx = 1.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.434 (2) ÅCell parameters from 3998 reflections
b = 11.726 (2) Åθ = 2.2–25.4°
c = 22.200 (4) ŵ = 1.15 mm1
α = 100.90 (3)°T = 295 K
β = 93.92 (2)°Block, blue
γ = 111.62 (3)°0.13 × 0.10 × 0.08 mm
V = 2451.0 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8587 independent reflections
Radiation source: fine-focus sealed tube6410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.1°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.865, Tmax = 0.914k = 1313
12840 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.0501P]
where P = (Fo2 + 2Fc2)/3
8587 reflections(Δ/σ)max = 0.001
649 parametersΔρmax = 0.41 e Å3
8 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(C7H4ClO2)4(C12H8N2)2]·2H2Oγ = 111.62 (3)°
Mr = 1145.75V = 2451.0 (10) Å3
Triclinic, P1Z = 2
a = 10.434 (2) ÅMo Kα radiation
b = 11.726 (2) ŵ = 1.15 mm1
c = 22.200 (4) ÅT = 295 K
α = 100.90 (3)°0.13 × 0.10 × 0.08 mm
β = 93.92 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8587 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
6410 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.914Rint = 0.018
12840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0418 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
8587 reflectionsΔρmin = 0.42 e Å3
649 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54184 (4)0.38049 (4)0.018837 (18)0.03958 (13)
Cl10.95390 (11)0.90781 (10)0.12910 (6)0.0788 (3)
Cl20.09359 (13)0.15601 (12)0.05237 (6)0.0980 (5)
O10.6047 (2)0.56208 (19)0.05751 (10)0.0376 (5)
O20.8306 (2)0.6137 (2)0.11067 (11)0.0521 (6)
O30.3988 (2)0.3439 (2)0.06436 (11)0.0504 (6)
O40.5292 (3)0.3361 (4)0.15246 (15)0.0926 (11)
O90.7523 (3)0.3525 (3)0.10158 (15)0.0870 (10)
H9A0.68020.34710.11840.130*
H9B0.80180.42990.10450.130*
N10.4697 (3)0.1959 (3)0.02423 (13)0.0442 (7)
N20.6837 (3)0.3972 (3)0.03053 (13)0.0435 (7)
C10.3616 (4)0.0977 (3)0.01969 (18)0.0542 (10)
H10.30260.11230.00760.065*
C20.3260 (5)0.0269 (4)0.0519 (2)0.0717 (13)
H20.24780.09160.04540.086*
C30.4021 (6)0.0494 (4)0.0899 (2)0.0816 (15)
H30.38150.13050.11300.098*
C40.5178 (5)0.0518 (5)0.09597 (19)0.0703 (13)
C50.6086 (7)0.0408 (6)0.1339 (3)0.1012 (19)
H50.59470.03770.15830.121*
C60.7181 (7)0.1411 (7)0.1370 (3)0.104 (2)
H60.77940.12900.16360.125*
C70.7503 (5)0.2677 (5)0.1023 (2)0.0693 (12)
C80.8621 (5)0.3766 (6)0.1033 (2)0.0865 (16)
H80.92680.36990.12920.104*
C90.8838 (4)0.4928 (5)0.0691 (2)0.0746 (14)
H90.96080.56370.07090.090*
C100.7901 (4)0.5001 (4)0.03298 (18)0.0550 (10)
H100.79920.57790.00930.066*
C110.6638 (4)0.2825 (4)0.06467 (16)0.0495 (9)
C120.5485 (4)0.1746 (4)0.06165 (17)0.0495 (9)
C130.4217 (4)0.3373 (3)0.12021 (18)0.0489 (9)
C140.3049 (4)0.3387 (3)0.14993 (15)0.0445 (8)
C150.1598 (4)0.2647 (4)0.12444 (17)0.0575 (10)
C160.0608 (4)0.2747 (4)0.1542 (2)0.0713 (12)
H160.03300.22650.13920.086*
C170.1057 (5)0.3630 (4)0.2102 (2)0.0747 (13)
H170.03780.37510.23260.090*
C180.2490 (5)0.4375 (4)0.23637 (19)0.0680 (12)
H180.27080.49550.27420.082*
C190.3469 (4)0.4241 (4)0.20759 (17)0.0551 (10)
H190.44050.46870.22420.066*
C200.7204 (3)0.6319 (3)0.10087 (14)0.0368 (7)
C210.7129 (3)0.7380 (3)0.14494 (15)0.0389 (8)
C220.6016 (4)0.7086 (4)0.17226 (17)0.0529 (9)
H220.52990.62910.16030.063*
C230.5954 (5)0.7976 (5)0.2179 (2)0.0740 (13)
H230.51830.77880.23860.089*
C240.7025 (6)0.9198 (5)0.2359 (2)0.0844 (15)
H240.69420.97820.26840.101*
C250.8105 (5)0.9526 (4)0.2088 (2)0.0703 (12)
H250.87961.03350.21960.084*
C260.8166 (4)0.8620 (3)0.16380 (17)0.0497 (9)
Cu20.52065 (4)0.86567 (4)0.485627 (18)0.03791 (13)
Cl30.73450 (12)1.24915 (11)0.35243 (7)0.0906 (4)
Cl40.02279 (12)0.59677 (15)0.45077 (6)0.0978 (5)
O50.3161 (2)0.7761 (2)0.44333 (11)0.0488 (6)
O60.3543 (3)0.6717 (3)0.36542 (14)0.0828 (10)
O70.5251 (2)0.9980 (2)0.44242 (10)0.0411 (5)
O80.6558 (3)0.9789 (3)0.37891 (13)0.0726 (9)
N30.7321 (3)0.9371 (3)0.52815 (13)0.0425 (7)
N40.5171 (3)0.7286 (3)0.52843 (12)0.0417 (7)
C270.4072 (4)0.6285 (3)0.52898 (16)0.0494 (9)
H270.32040.61640.50890.059*
C280.4216 (5)0.5387 (4)0.56053 (18)0.0613 (11)
H280.34340.46760.56120.074*
C290.5561 (5)0.5555 (4)0.59189 (19)0.0664 (12)
H290.56280.49480.61210.080*
C300.6754 (5)0.6610 (4)0.59229 (17)0.0578 (10)
C310.8209 (5)0.6897 (5)0.6241 (2)0.0757 (13)
H310.83500.63150.64410.091*
C320.9289 (5)0.7951 (6)0.6245 (2)0.0789 (14)
H321.01710.80970.64390.095*
C330.9069 (4)0.8875 (4)0.59384 (18)0.0563 (10)
C341.0139 (4)1.0030 (5)0.5946 (2)0.0681 (12)
H341.10381.02580.61490.082*
C350.9785 (4)1.0814 (4)0.5635 (2)0.0650 (11)
H351.04661.15950.56330.078*
C360.8359 (4)1.0457 (4)0.53021 (18)0.0518 (9)
H360.81871.10230.50990.062*
C370.7663 (4)0.8591 (3)0.56016 (15)0.0447 (8)
C380.6505 (4)0.7466 (3)0.55994 (15)0.0437 (8)
C390.2722 (3)0.7018 (3)0.38904 (16)0.0449 (8)
C400.1253 (3)0.6602 (3)0.35420 (15)0.0440 (8)
C410.0958 (4)0.6676 (4)0.29241 (17)0.0605 (10)
H410.17240.69460.27190.073*
C420.0403 (5)0.6381 (5)0.2565 (2)0.0825 (14)
H420.04480.65060.21640.099*
C430.1542 (5)0.5948 (5)0.2797 (2)0.0855 (15)
H430.24210.57500.25810.103*
C440.1337 (4)0.5809 (5)0.3391 (2)0.0795 (14)
H440.21220.54770.35770.095*
C450.0045 (4)0.6149 (4)0.37574 (18)0.0573 (10)
C460.5634 (3)1.0106 (3)0.39248 (14)0.0438 (8)
C470.4857 (3)1.0618 (3)0.35128 (14)0.0427 (8)
C480.3355 (4)1.0019 (3)0.33068 (16)0.0476 (9)
H480.28610.93280.34630.057*
C490.2565 (5)1.0395 (4)0.28870 (18)0.0604 (10)
H490.16070.99560.27760.072*
C500.3245 (5)1.1393 (4)0.26607 (19)0.0695 (12)
H500.27731.16650.23860.083*
C510.4700 (5)1.2025 (4)0.28511 (19)0.0650 (12)
H510.51731.27270.26990.078*
C520.5492 (4)1.1635 (3)0.32706 (18)0.0542 (10)
O100.6462 (4)0.7321 (4)0.3920 (2)0.1380 (18)
H10A0.56200.71000.37580.207*
H10B0.68580.81400.39560.207*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0460 (2)0.0370 (2)0.0378 (2)0.01726 (19)0.01944 (19)0.00650 (18)
Cl10.0632 (7)0.0623 (7)0.0957 (9)0.0055 (5)0.0268 (6)0.0168 (6)
Cl20.0783 (8)0.0894 (9)0.0672 (8)0.0183 (7)0.0358 (6)0.0230 (6)
O10.0396 (12)0.0353 (12)0.0355 (12)0.0147 (10)0.0072 (10)0.0018 (10)
O20.0480 (14)0.0628 (16)0.0484 (15)0.0295 (13)0.0057 (12)0.0037 (12)
O30.0544 (15)0.0547 (15)0.0418 (15)0.0181 (12)0.0259 (12)0.0104 (12)
O40.082 (2)0.157 (3)0.078 (2)0.071 (2)0.0393 (19)0.060 (2)
O90.099 (2)0.067 (2)0.098 (3)0.0319 (18)0.037 (2)0.0200 (18)
N10.0589 (18)0.0427 (17)0.0379 (16)0.0266 (15)0.0120 (15)0.0097 (13)
N20.0445 (16)0.0560 (19)0.0392 (16)0.0271 (15)0.0162 (14)0.0137 (14)
C10.067 (3)0.043 (2)0.050 (2)0.021 (2)0.003 (2)0.0103 (18)
C20.093 (3)0.043 (2)0.069 (3)0.022 (2)0.010 (3)0.005 (2)
C30.123 (4)0.050 (3)0.072 (3)0.048 (3)0.009 (3)0.008 (2)
C40.106 (4)0.072 (3)0.049 (2)0.062 (3)0.004 (3)0.004 (2)
C50.148 (6)0.110 (5)0.077 (4)0.096 (5)0.029 (4)0.006 (3)
C60.125 (5)0.144 (6)0.080 (4)0.102 (5)0.041 (4)0.000 (4)
C70.066 (3)0.109 (4)0.052 (3)0.057 (3)0.022 (2)0.011 (3)
C80.075 (3)0.152 (5)0.059 (3)0.072 (4)0.032 (3)0.018 (3)
C90.051 (2)0.124 (4)0.067 (3)0.039 (3)0.029 (2)0.046 (3)
C100.049 (2)0.076 (3)0.051 (2)0.030 (2)0.0213 (19)0.023 (2)
C110.059 (2)0.073 (3)0.036 (2)0.047 (2)0.0160 (18)0.0115 (19)
C120.065 (2)0.057 (2)0.041 (2)0.042 (2)0.0079 (19)0.0061 (18)
C130.060 (2)0.039 (2)0.049 (2)0.0171 (18)0.0242 (19)0.0140 (17)
C140.059 (2)0.0406 (19)0.0339 (19)0.0157 (17)0.0184 (17)0.0129 (16)
C150.066 (3)0.052 (2)0.043 (2)0.009 (2)0.026 (2)0.0070 (18)
C160.058 (3)0.084 (3)0.059 (3)0.010 (2)0.033 (2)0.015 (2)
C170.087 (3)0.086 (3)0.059 (3)0.035 (3)0.045 (3)0.020 (3)
C180.098 (3)0.066 (3)0.042 (2)0.033 (3)0.031 (2)0.008 (2)
C190.066 (2)0.055 (2)0.044 (2)0.019 (2)0.018 (2)0.0143 (18)
C200.0441 (19)0.0379 (18)0.0302 (18)0.0161 (16)0.0122 (15)0.0096 (15)
C210.0467 (19)0.044 (2)0.0282 (17)0.0209 (16)0.0053 (15)0.0078 (15)
C220.066 (2)0.058 (2)0.048 (2)0.034 (2)0.024 (2)0.0167 (19)
C230.100 (4)0.092 (4)0.054 (3)0.058 (3)0.038 (3)0.022 (3)
C240.134 (5)0.088 (4)0.048 (3)0.069 (4)0.022 (3)0.000 (3)
C250.092 (3)0.051 (3)0.056 (3)0.025 (2)0.003 (3)0.007 (2)
C260.054 (2)0.048 (2)0.041 (2)0.0167 (18)0.0020 (18)0.0033 (17)
Cu20.0422 (2)0.0414 (2)0.0336 (2)0.0207 (2)0.00609 (18)0.00762 (18)
Cl30.0742 (8)0.0713 (8)0.1372 (12)0.0275 (6)0.0475 (8)0.0399 (8)
Cl40.0716 (8)0.1367 (12)0.0786 (9)0.0123 (8)0.0162 (7)0.0663 (9)
O50.0462 (14)0.0533 (15)0.0423 (14)0.0178 (12)0.0024 (12)0.0049 (12)
O60.0676 (19)0.105 (3)0.074 (2)0.0526 (19)0.0047 (17)0.0177 (18)
O70.0555 (14)0.0489 (14)0.0328 (13)0.0314 (12)0.0185 (11)0.0146 (10)
O80.093 (2)0.104 (2)0.0677 (19)0.074 (2)0.0489 (17)0.0417 (17)
N30.0436 (16)0.0514 (18)0.0385 (16)0.0264 (15)0.0128 (13)0.0059 (14)
N40.0538 (17)0.0443 (17)0.0321 (15)0.0259 (15)0.0128 (13)0.0042 (13)
C270.064 (2)0.048 (2)0.040 (2)0.027 (2)0.0144 (18)0.0071 (17)
C280.088 (3)0.051 (2)0.052 (2)0.030 (2)0.029 (2)0.0144 (19)
C290.106 (4)0.065 (3)0.054 (3)0.054 (3)0.030 (3)0.025 (2)
C300.087 (3)0.069 (3)0.039 (2)0.053 (3)0.017 (2)0.014 (2)
C310.098 (4)0.098 (4)0.066 (3)0.069 (3)0.020 (3)0.034 (3)
C320.080 (3)0.129 (5)0.062 (3)0.075 (3)0.014 (3)0.029 (3)
C330.057 (2)0.082 (3)0.043 (2)0.044 (2)0.0116 (19)0.008 (2)
C340.042 (2)0.105 (4)0.058 (3)0.036 (3)0.007 (2)0.006 (3)
C350.049 (2)0.077 (3)0.063 (3)0.023 (2)0.018 (2)0.002 (2)
C360.047 (2)0.057 (2)0.052 (2)0.0227 (19)0.0167 (18)0.0057 (19)
C370.050 (2)0.062 (2)0.0339 (19)0.0371 (19)0.0116 (16)0.0052 (17)
C380.059 (2)0.051 (2)0.0322 (18)0.0353 (19)0.0110 (17)0.0051 (16)
C390.053 (2)0.041 (2)0.044 (2)0.0232 (18)0.0069 (18)0.0070 (17)
C400.049 (2)0.041 (2)0.041 (2)0.0180 (17)0.0018 (17)0.0064 (16)
C410.062 (2)0.079 (3)0.039 (2)0.032 (2)0.0057 (19)0.003 (2)
C420.076 (3)0.123 (4)0.048 (3)0.042 (3)0.002 (2)0.015 (3)
C430.052 (3)0.121 (4)0.072 (3)0.026 (3)0.015 (3)0.020 (3)
C440.050 (2)0.097 (4)0.084 (4)0.015 (2)0.008 (2)0.031 (3)
C450.052 (2)0.058 (2)0.054 (2)0.0102 (19)0.0026 (19)0.022 (2)
C460.056 (2)0.046 (2)0.037 (2)0.0273 (18)0.0175 (17)0.0078 (16)
C470.061 (2)0.047 (2)0.0304 (18)0.0310 (18)0.0188 (17)0.0082 (15)
C480.062 (2)0.050 (2)0.040 (2)0.0312 (19)0.0172 (18)0.0091 (17)
C490.071 (3)0.071 (3)0.046 (2)0.039 (2)0.009 (2)0.006 (2)
C500.111 (4)0.081 (3)0.047 (2)0.067 (3)0.019 (3)0.023 (2)
C510.100 (3)0.062 (3)0.059 (3)0.048 (3)0.039 (3)0.031 (2)
C520.076 (3)0.052 (2)0.051 (2)0.037 (2)0.031 (2)0.0166 (19)
O100.081 (2)0.122 (3)0.238 (6)0.037 (2)0.036 (3)0.105 (4)
Geometric parameters (Å, º) top
Cu1—O31.825 (2)Cu2—N42.006 (3)
Cu1—N21.876 (3)Cu2—O52.060 (3)
Cu1—O11.976 (2)Cu2—N32.125 (3)
Cu1—N12.021 (3)Cu2—O7i2.244 (2)
Cl1—C261.636 (4)Cl3—C521.809 (4)
Cl2—C151.758 (4)Cl4—C451.725 (4)
O1—C201.367 (4)O5—C391.286 (4)
O2—C201.257 (4)O6—C391.162 (4)
O3—C131.269 (4)O7—C461.220 (4)
O4—C131.295 (5)O7—Cu2i2.244 (2)
O9—H9A0.8496O8—C461.193 (4)
O9—H9B0.8500N3—C361.323 (4)
N1—C121.262 (4)N3—C371.386 (4)
N1—C11.308 (4)N4—C271.308 (4)
N2—C101.318 (5)N4—C381.438 (4)
N2—C111.346 (5)C27—C281.415 (5)
C1—C21.398 (5)C27—H270.9300
C1—H10.9300C28—C291.450 (6)
C2—C31.253 (6)C28—H280.9300
C2—H20.9300C29—C301.393 (6)
C3—C41.382 (7)C29—H290.9300
C3—H30.9300C30—C381.424 (5)
C4—C51.335 (7)C30—C311.518 (6)
C4—C121.403 (5)C31—C321.328 (6)
C5—C61.320 (8)C31—H310.9300
C5—H50.9300C32—C331.460 (6)
C6—C71.440 (7)C32—H320.9300
C6—H60.9300C33—C341.399 (6)
C7—C111.307 (5)C33—C371.489 (5)
C7—C81.382 (7)C34—C351.385 (6)
C8—C91.357 (7)C34—H340.9300
C8—H80.9300C35—C361.486 (5)
C9—C101.322 (5)C35—H350.9300
C9—H90.9300C36—H360.9300
C10—H100.9300C37—C381.422 (5)
C11—C121.406 (5)C39—C401.526 (2)
C13—C141.429 (5)C40—C451.337 (5)
C14—C191.396 (5)C40—C411.411 (5)
C14—C151.448 (5)C41—C421.467 (6)
C15—C161.293 (5)C41—H410.9300
C16—C171.382 (6)C42—C431.294 (6)
C16—H160.9300C42—H420.9300
C17—C181.436 (6)C43—C441.371 (6)
C17—H170.9300C43—H430.9300
C18—C191.283 (5)C44—C451.481 (6)
C18—H180.9300C44—H440.9300
C19—H190.9300C46—C471.522 (2)
C20—C211.460 (4)C47—C521.364 (5)
C21—C221.310 (5)C47—C481.459 (5)
C21—C261.417 (5)C48—C491.435 (5)
C22—C231.334 (5)C48—H480.9300
C22—H220.9300C49—C501.336 (6)
C23—C241.415 (7)C49—H490.9300
C23—H230.9300C50—C511.414 (6)
C24—C251.280 (6)C50—H500.9300
C24—H240.9300C51—C521.447 (6)
C25—C261.337 (5)C51—H510.9300
C25—H250.9300O10—H10A0.8501
Cu2—O71.961 (2)O10—H10B0.8796
O3—Cu1—N2173.10 (12)O7—Cu2—N3100.53 (11)
O3—Cu1—O190.74 (10)N4—Cu2—N379.43 (12)
N2—Cu1—O196.02 (11)O5—Cu2—N3173.41 (10)
O3—Cu1—N188.95 (11)O7—Cu2—O7i77.45 (9)
N2—Cu1—N184.37 (12)N4—Cu2—O7i103.63 (9)
O1—Cu1—N1176.75 (10)O5—Cu2—O7i93.53 (10)
C20—O1—Cu1125.85 (19)N3—Cu2—O7i91.28 (10)
C13—O3—Cu1119.8 (2)C39—O5—Cu2126.2 (2)
H9A—O9—H9B108.7C46—O7—Cu2127.7 (2)
C12—N1—C1116.1 (3)C46—O7—Cu2i129.0 (2)
C12—N1—Cu1111.3 (3)Cu2—O7—Cu2i102.55 (9)
C1—N1—Cu1132.6 (3)C36—N3—C37114.7 (3)
C10—N2—C11122.5 (3)C36—N3—Cu2130.3 (2)
C10—N2—Cu1128.6 (3)C37—N3—Cu2115.0 (2)
C11—N2—Cu1108.9 (2)C27—N4—C38119.8 (3)
N1—C1—C2126.3 (4)C27—N4—Cu2125.8 (2)
N1—C1—H1116.8C38—N4—Cu2114.3 (2)
C2—C1—H1116.8N4—C27—C28119.3 (4)
C3—C2—C1118.4 (5)N4—C27—H27120.4
C3—C2—H2120.8C28—C27—H27120.4
C1—C2—H2120.8C27—C28—C29121.2 (4)
C2—C3—C4117.1 (4)C27—C28—H28119.4
C2—C3—H3121.4C29—C28—H28119.4
C4—C3—H3121.4C30—C29—C28121.1 (3)
C5—C4—C3123.3 (5)C30—C29—H29119.5
C5—C4—C12115.1 (5)C28—C29—H29119.5
C3—C4—C12121.6 (4)C29—C30—C38113.7 (4)
C6—C5—C4120.2 (5)C29—C30—C31125.9 (4)
C6—C5—H5119.9C38—C30—C31120.4 (4)
C4—C5—H5119.9C32—C31—C30122.4 (4)
C5—C6—C7125.3 (5)C32—C31—H31118.8
C5—C6—H6117.4C30—C31—H31118.8
C7—C6—H6117.4C31—C32—C33119.0 (4)
C11—C7—C8115.2 (4)C31—C32—H32120.5
C11—C7—C6116.4 (5)C33—C32—H32120.5
C8—C7—C6128.4 (4)C34—C33—C32122.3 (4)
C9—C8—C7124.3 (4)C34—C33—C37118.1 (3)
C9—C8—H8117.9C32—C33—C37119.6 (4)
C7—C8—H8117.9C35—C34—C33116.2 (4)
C10—C9—C8116.8 (5)C35—C34—H34121.9
C10—C9—H9121.6C33—C34—H34121.9
C8—C9—H9121.6C34—C35—C36122.6 (4)
N2—C10—C9120.0 (4)C34—C35—H35118.7
N2—C10—H10120.0C36—C35—H35118.7
C9—C10—H10120.0N3—C36—C35123.0 (4)
C7—C11—N2121.2 (4)N3—C36—H36118.5
C7—C11—C12117.5 (4)C35—C36—H36118.5
N2—C11—C12121.3 (3)N3—C37—C38113.1 (3)
N1—C12—C4120.5 (4)N3—C37—C33125.4 (3)
N1—C12—C11114.1 (3)C38—C37—C33121.4 (3)
C4—C12—C11125.4 (4)C37—C38—C30117.2 (3)
O3—C13—O4131.9 (3)C37—C38—N4118.0 (3)
O3—C13—C14108.9 (3)C30—C38—N4124.8 (3)
O4—C13—C14119.1 (3)O6—C39—O5115.8 (3)
C19—C14—C13111.6 (3)O6—C39—C40120.2 (3)
C19—C14—C15122.7 (3)O5—C39—C40124.0 (3)
C13—C14—C15125.7 (3)C45—C40—C41108.2 (3)
C16—C15—C14121.3 (4)C45—C40—C39127.6 (3)
C16—C15—Cl2111.6 (3)C41—C40—C39124.2 (3)
C14—C15—Cl2127.1 (3)C40—C41—C42128.3 (4)
C15—C16—C17114.6 (4)C40—C41—H41115.9
C15—C16—H16122.7C42—C41—H41115.9
C17—C16—H16122.7C43—C42—C41121.0 (4)
C16—C17—C18125.1 (4)C43—C42—H42119.5
C16—C17—H17117.5C41—C42—H42119.5
C18—C17—H17117.5C42—C43—C44113.9 (4)
C19—C18—C17120.1 (4)C42—C43—H43123.1
C19—C18—H18119.9C44—C43—H43123.1
C17—C18—H18119.9C43—C44—C45124.7 (4)
C18—C19—C14116.2 (4)C43—C44—H44117.7
C18—C19—H19121.9C45—C44—H44117.7
C14—C19—H19121.9C40—C45—C44123.9 (4)
O2—C20—O1129.0 (3)C40—C45—Cl4113.8 (3)
O2—C20—C21114.6 (3)C44—C45—Cl4122.2 (3)
O1—C20—C21116.2 (3)O8—C46—O7117.8 (3)
C22—C21—C26118.8 (3)O8—C46—C47125.0 (3)
C22—C21—C20114.1 (3)O7—C46—C47117.2 (3)
C26—C21—C20126.9 (3)C52—C47—C48112.9 (3)
C21—C22—C23117.2 (4)C52—C47—C46123.9 (3)
C21—C22—H22121.4C48—C47—C46123.1 (3)
C23—C22—H22121.4C49—C48—C47126.3 (3)
C22—C23—C24122.0 (4)C49—C48—H48116.9
C22—C23—H23119.0C47—C48—H48116.9
C24—C23—H23119.0C50—C49—C48118.2 (4)
C25—C24—C23122.2 (4)C50—C49—H49120.9
C25—C24—H24118.9C48—C49—H49120.9
C23—C24—H24118.9C49—C50—C51118.2 (4)
C24—C25—C26115.1 (4)C49—C50—H50120.9
C24—C25—H25122.4C51—C50—H50120.9
C26—C25—H25122.4C50—C51—C52123.4 (4)
C25—C26—C21124.5 (4)C50—C51—H51118.3
C25—C26—Cl1113.9 (3)C52—C51—H51118.3
C21—C26—Cl1121.5 (3)C47—C52—C51121.1 (4)
O7—Cu2—N4178.92 (10)C47—C52—Cl3116.5 (3)
O7—Cu2—O584.93 (10)C51—C52—Cl3122.3 (3)
N4—Cu2—O595.05 (11)H10A—O10—H10B106.0
O3—Cu1—O1—C20106.8 (2)O5—Cu2—O7—Cu2i94.76 (11)
N2—Cu1—O1—C2071.9 (2)N3—Cu2—O7—Cu2i88.96 (11)
O1—Cu1—O3—C1380.8 (3)O7i—Cu2—O7—Cu2i0.0
N1—Cu1—O3—C13102.4 (3)O7—Cu2—N3—C365.6 (3)
O3—Cu1—N1—C12176.8 (2)N4—Cu2—N3—C36175.5 (3)
N2—Cu1—N1—C121.4 (2)O7i—Cu2—N3—C3671.8 (3)
O3—Cu1—N1—C11.8 (3)O7—Cu2—N3—C37176.2 (2)
N2—Cu1—N1—C1179.9 (3)N4—Cu2—N3—C372.7 (2)
O1—Cu1—N2—C102.9 (3)O7i—Cu2—N3—C37106.4 (2)
N1—Cu1—N2—C10179.6 (3)O5—Cu2—N4—C275.9 (3)
O1—Cu1—N2—C11178.5 (2)N3—Cu2—N4—C27177.8 (3)
N1—Cu1—N2—C111.7 (2)O7i—Cu2—N4—C2789.0 (3)
C12—N1—C1—C20.2 (6)O5—Cu2—N4—C38173.4 (2)
Cu1—N1—C1—C2178.4 (3)N3—Cu2—N4—C383.0 (2)
N1—C1—C2—C31.2 (7)O7i—Cu2—N4—C3891.7 (2)
C1—C2—C3—C41.2 (7)C38—N4—C27—C280.3 (5)
C2—C3—C4—C5178.9 (5)Cu2—N4—C27—C28179.0 (2)
C2—C3—C4—C120.6 (7)N4—C27—C28—C290.3 (5)
C3—C4—C5—C6179.1 (5)C27—C28—C29—C300.4 (6)
C12—C4—C5—C60.4 (8)C28—C29—C30—C380.2 (5)
C4—C5—C6—C70.9 (10)C28—C29—C30—C31179.1 (4)
C5—C6—C7—C110.7 (9)C29—C30—C31—C32177.4 (4)
C5—C6—C7—C8179.7 (6)C38—C30—C31—C321.5 (6)
C11—C7—C8—C90.8 (7)C30—C31—C32—C330.8 (7)
C6—C7—C8—C9179.7 (5)C31—C32—C33—C34177.0 (4)
C7—C8—C9—C100.4 (7)C31—C32—C33—C373.2 (6)
C11—N2—C10—C91.4 (5)C32—C33—C34—C35179.8 (4)
Cu1—N2—C10—C9177.1 (3)C37—C33—C34—C350.0 (5)
C8—C9—C10—N21.5 (6)C33—C34—C35—C360.7 (6)
C8—C7—C11—N20.9 (6)C37—N3—C36—C350.7 (5)
C6—C7—C11—N2179.4 (4)Cu2—N3—C36—C35178.9 (2)
C8—C7—C11—C12179.7 (4)C34—C35—C36—N30.4 (6)
C6—C7—C11—C120.1 (6)C36—N3—C37—C38176.6 (3)
C10—N2—C11—C70.1 (5)Cu2—N3—C37—C381.9 (3)
Cu1—N2—C11—C7178.7 (3)C36—N3—C37—C331.4 (5)
C10—N2—C11—C12179.2 (3)Cu2—N3—C37—C33180.0 (3)
Cu1—N2—C11—C122.0 (4)C34—C33—C37—N31.2 (5)
C1—N1—C12—C40.5 (5)C32—C33—C37—N3178.6 (3)
Cu1—N1—C12—C4179.4 (3)C34—C33—C37—C38176.7 (3)
C1—N1—C12—C11179.6 (3)C32—C33—C37—C383.5 (5)
Cu1—N1—C12—C110.7 (4)N3—C37—C38—C30179.4 (3)
C5—C4—C12—N1179.9 (4)C33—C37—C38—C301.2 (5)
C3—C4—C12—N10.4 (6)N3—C37—C38—N40.6 (4)
C5—C4—C12—C110.2 (6)C33—C37—C38—N4177.5 (3)
C3—C4—C12—C11179.7 (4)C29—C30—C38—C37177.8 (3)
C7—C11—C12—N1179.8 (3)C31—C30—C38—C371.2 (5)
N2—C11—C12—N10.9 (5)C29—C30—C38—N40.9 (5)
C7—C11—C12—C40.3 (6)C31—C30—C38—N4179.8 (3)
N2—C11—C12—C4179.0 (3)C27—N4—C38—C37177.7 (3)
Cu1—O3—C13—O410.3 (6)Cu2—N4—C38—C373.0 (4)
Cu1—O3—C13—C14165.9 (2)C27—N4—C38—C300.9 (5)
O3—C13—C14—C19132.6 (3)Cu2—N4—C38—C30178.4 (3)
O4—C13—C14—C1944.1 (5)Cu2—O5—C39—O69.8 (5)
O3—C13—C14—C1546.1 (5)Cu2—O5—C39—C40166.4 (2)
O4—C13—C14—C15137.2 (4)O6—C39—C40—C45135.5 (4)
C19—C14—C15—C160.3 (6)O5—C39—C40—C4548.5 (5)
C13—C14—C15—C16178.2 (4)O6—C39—C40—C4146.5 (5)
C19—C14—C15—Cl2179.1 (3)O5—C39—C40—C41129.5 (4)
C13—C14—C15—Cl20.6 (6)C45—C40—C41—C422.7 (6)
C14—C15—C16—C171.7 (6)C39—C40—C41—C42175.6 (4)
Cl2—C15—C16—C17177.3 (3)C40—C41—C42—C432.8 (8)
C15—C16—C17—C181.8 (7)C41—C42—C43—C440.2 (8)
C16—C17—C18—C190.5 (7)C42—C43—C44—C451.9 (8)
C17—C18—C19—C142.5 (6)C41—C40—C45—C440.5 (6)
C13—C14—C19—C18176.2 (3)C39—C40—C45—C44177.8 (4)
C15—C14—C19—C182.6 (6)C41—C40—C45—Cl4178.6 (3)
Cu1—O1—C20—O225.5 (4)C39—C40—C45—Cl43.2 (5)
Cu1—O1—C20—C21149.9 (2)C43—C44—C45—C401.9 (8)
O2—C20—C21—C22125.2 (3)C43—C44—C45—Cl4179.1 (4)
O1—C20—C21—C2250.9 (4)Cu2—O7—C46—O833.3 (5)
O2—C20—C21—C2649.2 (5)Cu2i—O7—C46—O8134.9 (3)
O1—C20—C21—C26134.6 (3)Cu2—O7—C46—C47144.7 (2)
C26—C21—C22—C232.1 (5)Cu2i—O7—C46—C4747.2 (4)
C20—C21—C22—C23172.9 (3)O8—C46—C47—C5255.7 (5)
C21—C22—C23—C241.2 (6)O7—C46—C47—C52126.5 (4)
C22—C23—C24—C251.0 (8)O8—C46—C47—C48120.6 (4)
C23—C24—C25—C262.0 (7)O7—C46—C47—C4857.2 (4)
C24—C25—C26—C211.1 (6)C52—C47—C48—C491.1 (5)
C24—C25—C26—Cl1178.7 (4)C46—C47—C48—C49175.6 (3)
C22—C21—C26—C251.0 (6)C47—C48—C49—C500.6 (6)
C20—C21—C26—C25173.2 (4)C48—C49—C50—C510.4 (6)
C22—C21—C26—Cl1176.4 (3)C49—C50—C51—C520.9 (6)
C20—C21—C26—Cl19.4 (5)C48—C47—C52—C510.5 (5)
O7—Cu2—O5—C3987.2 (3)C46—C47—C52—C51176.2 (3)
N4—Cu2—O5—C3991.7 (3)C48—C47—C52—Cl3177.2 (2)
O7i—Cu2—O5—C39164.3 (3)C46—C47—C52—Cl36.1 (4)
O5—Cu2—O7—C4694.7 (3)C50—C51—C52—C470.4 (6)
N3—Cu2—O7—C4681.6 (3)C50—C51—C52—Cl3178.1 (3)
O7i—Cu2—O7—C46170.6 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O9ii0.932.533.267 (6)136
C8—H8···O2iii0.932.473.182 (5)134
C29—H29···O6iv0.932.523.396 (5)157
C34—H34···O8v0.932.523.376 (5)153
C36—H36···O5i0.932.493.054 (4)119
C42—H42···O2vi0.932.483.338 (5)153
O9—H9A···O40.851.772.616 (4)179
O9—H9B···O20.852.042.826 (4)154
O10—H10A···O60.852.032.852 (5)162
O10—H10B···O80.882.162.928 (5)145
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4ClO2)4(C12H8N2)2]·2H2O
Mr1145.75
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.434 (2), 11.726 (2), 22.200 (4)
α, β, γ (°)100.90 (3), 93.92 (2), 111.62 (3)
V3)2451.0 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.865, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
12840, 8587, 6410
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.04
No. of reflections8587
No. of parameters649
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O9i0.932.533.267 (6)136.3
C8—H8···O2ii0.932.473.182 (5)133.9
C29—H29···O6iii0.932.523.396 (5)156.7
C34—H34···O8iv0.932.523.376 (5)152.5
C36—H36···O5v0.932.493.054 (4)119.1
C42—H42···O2vi0.932.483.338 (5)152.8
O9—H9A···O40.851.772.616 (4)179.4
O9—H9B···O20.852.042.826 (4)153.6
O10—H10A···O60.852.032.852 (5)162.1
O10—H10B···O80.882.162.928 (5)145.4
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+2, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z.
 

Acknowledgements

The author gratefully acknowledges financial support from the Scientific Research Foundation for High-Level Personnel, Yulin University (grant No. 11 GK03) and the Collaboration Programs of Yulin City and Universities.

References

First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, S. M. F., Chui, S. S. Y. & Shek, L. Y. (2000). J. Am. Chem. Soc. 122, 6293–6294.  Web of Science CSD CrossRef CAS Google Scholar
First citationMüller, A., Das, S. K. & Talismanov, S. (2003). Angew. Chem. Int. Ed. 42, 5039–5044.  Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1158-m1159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds